89 research outputs found

    Identification and characterization of a novel non-structural protein of bluetongue virus

    Get PDF
    Bluetongue virus (BTV) is the causative agent of a major disease of livestock (bluetongue). For over two decades, it has been widely accepted that the 10 segments of the dsRNA genome of BTV encode for 7 structural and 3 non-structural proteins. The non-structural proteins (NS1, NS2, NS3/NS3a) play different key roles during the viral replication cycle. In this study we show that BTV expresses a fourth non-structural protein (that we designated NS4) encoded by an open reading frame in segment 9 overlapping the open reading frame encoding VP6. NS4 is 77–79 amino acid residues in length and highly conserved among several BTV serotypes/strains. NS4 was expressed early post-infection and localized in the nucleoli of BTV infected cells. By reverse genetics, we showed that NS4 is dispensable for BTV replication in vitro, both in mammalian and insect cells, and does not affect viral virulence in murine models of bluetongue infection. Interestingly, NS4 conferred a replication advantage to BTV-8, but not to BTV-1, in cells in an interferon (IFN)-induced antiviral state. However, the BTV-1 NS4 conferred a replication advantage both to a BTV-8 reassortant containing the entire segment 9 of BTV-1 and to a BTV-8 mutant with the NS4 identical to the homologous BTV-1 protein. Collectively, this study suggests that NS4 plays an important role in virus-host interaction and is one of the mechanisms played, at least by BTV-8, to counteract the antiviral response of the host. In addition, the distinct nucleolar localization of NS4, being expressed by a virus that replicates exclusively in the cytoplasm, offers new avenues to investigate the multiple roles played by the nucleolus in the biology of the cell

    Relationship of literacy and heart failure in adults with diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although reading ability may impact educational strategies and management of heart failure (HF), the prevalence of limited literacy in patients with HF is unknown.</p> <p>Methods</p> <p>Subjects were drawn from the Vermont Diabetes Information System Field Survey, a cross-sectional study of adults with diabetes in primary care. Participants' self-reported characteristics were subjected to logistic regression to estimate the association of heart failure and literacy while controlling for social and economic factors. The Short Test of Functional Health Literacy was used to measure literacy.</p> <p>Results</p> <p>Of 172 subjects with HF and diabetes, 27% had limited literacy compared to 15% of 826 subjects without HF (OR 2.05; 95% CI 1.39, 3.02; <it>P </it>< 0.001). Adjusting for age, sex, race, income, marital status and health insurance, HF continued to be significantly associated with limited literacy (OR 1.55, 95% CI 1.00, 2.41, <it>P </it>= .05).</p> <p>After adjusting for education, however, HF was no longer independently associated with literacy (OR 1.31; 95% CI 0.82 – 2.08; <it>P </it>= 0.26).</p> <p>Conclusion</p> <p>Over one quarter of diabetic adults with HF have limited literacy. Although this association is no longer statistically significant when adjusted for education, clinicians should be aware that many of their patients have important limitations in dealing with written materials.</p

    Pair-Wise Regulation of Convergence and Extension Cell Movements by Four Phosphatases via RhoA

    Get PDF
    Various signaling pathways regulate shaping of the main body axis during early vertebrate development. Here, we focused on the role of protein-tyrosine phosphatase signaling in convergence and extension cell movements. We identified Ptpn20 as a structural paralogue of PTP-BL and both phosphatases were required for normal gastrulation cell movements. Interestingly, knockdowns of PTP-BL and Ptpn20 evoked similar developmental defects as knockdown of RPTPα and PTPε. Co-knockdown of RPTPα and PTP-BL, but not Ptpn20, had synergistic effects and conversely, PTPε and Ptpn20, but not PTP-BL, cooperated, demonstrating the specificity of our approach. RPTPα and PTPε knockdowns were rescued by constitutively active RhoA, whereas PTP-BL and Ptpn20 knockdowns were rescued by dominant negative RhoA. Consistently, RPTPα and PTP-BL had opposite effects on RhoA activation, both in a PTP-dependent manner. Downstream of the PTPs, we identified NGEF and Arhgap29, regulating RhoA activation and inactivation, respectively, in convergence and extension cell movements. We propose a model in which two phosphatases activate RhoA and two phosphatases inhibit RhoA, resulting in proper cell polarization and normal convergence and extension cell movements

    The Ecological Importance of Unregulated Tributaries to Macroinvertebrate Diversity and Community Composition in a Regulated River

    Get PDF
    In regulated rivers, dams alter longitudinal gradients in flow regimes, geomorphology, water quality and temperature with associated impacts on aquatic biota. Unregulated tributaries can increase biodiversity in regulated environments by contributing colonists to the main channel and creating transitional habitats at a stream junction. We assessed whether unregulated tributaries influence macroinvertebrate communities in two mainstem rivers during summer low-flows. Three tributary junctions of upland cobble-gravel bed streams were surveyed in an unregulated and a regulated river in the Sierra Nevada Mountains, California, USA. We found distinct physical habitat conditions and increased macroinvertebrate abundance and diversity in unregulated tributaries on the regulated river, but macroinvertebrate diversity did not increase downstream of tributary junctions as predicted. On the unregulated river, macroinvertebrate diversity was similar in upstream, downstream and unregulated tributary sites. Our findings highlight that unregulated tributaries support high macroinvertebrate diversity and heterogeneous communities compared to the mainstem sites in a regulated river, and thus likely support ecological processes, such as spillover predation, breeding and refugia use for mobile taxa. We suggest unregulated tributaries are an integral component of river networks, serving as valuable links in the landscape for enhancing biodiversity, and should be protected in conservation and management plans

    Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase

    Full text link
    corecore