2,094 research outputs found

    Wetting, roughness and hydrodynamic slip

    Full text link
    The hydrodynamic slippage at a solid-liquid interface is currently at the center of our understanding of fluid mechanics. For hundreds of years this science has relied upon no-slip boundary conditions at the solid-liquid interface that has been applied successfully to model many macroscopic experiments, and the state of this interface has played a minor role in determining the flow. However, the problem is not that simple and has been revisited recently. Due to the change in the properties of the interface, such as wettability and roughness, this classical boundary condition could be violated, leading to a hydrodynamic slip. In this chapter, we review recent advances in the understanding and expectations for the hydrodynamic boundary conditions in different situations, by focussing mostly on key papers from past decade. We highlight mostly the impact of hydrophobicity, roughness, and especially their combination on the flow properties. In particular, we show that hydrophobic slippage can be dramatically affected by the presence of roughness, by inducing novel hydrodynamic phenomena, such as giant interfacial slip, superfluidity, mixing, and low hydrodynamic drag. Promising directions for further research are also discussed.Comment: 36 pages, 19 figures. This chapter would be a part of "Nanoscale liquid interfaces" boo

    Wetting, roughness and flow boundary conditions

    Full text link
    We discuss how the wettability and roughness of a solid impacts its hydrodynamic properties. We see in particular that hydrophobic slippage can be dramatically affected by the presence of roughness. Owing to the development of refined methods for setting very well-controlled micro- or nanotextures on a solid, these effects are being exploited to induce novel hydrodynamic properties, such as giant interfacial slip, superfluidity, mixing, and low hydrodynamic drag, that could not be achieved without roughness.Comment: 28 pages, 14 figures, 4 tables; accepted for publication in Journal of Physics: Condensed Matte

    Hydrodynamic interaction with super-hydrophobic surfaces

    Full text link
    Patterned surfaces with large effective slip lengths, such as super-hydrophobic surfaces containing trapped gas bubbles, have the potential to reduce hydrodynamic drag. Based on lubrication theory, we analyze an approach of a hydrophilic disk to such a surface. The drag force is predicted analytically and formulated in terms of a correction function to the Reynolds equation, which is shown to be the harmonic mean of corrections expressed through effective slip lengths in the two principal (fastest and slowest) orthogonal directions. The reduction of drag is especially pronounced for a thin (compared to texture period) gap. It is not really sensitive to the pattern geometry, but depends strongly on the fraction of the gas phase and local slip length at the gas area.Comment: 20 pages, 7 figure

    Effective slip in pressure-driven flow past super-hydrophobic stripes

    Full text link
    Super-hydrophobic array of grooves containing trapped gas (stripes), have the potential to greatly reduce drag and enhance mixing phenomena in microfluidic devices. Recent work has focused on idealized cases of stick-perfect slip stripes, with limited guidance. Here, we analyze the experimentally relevant situation of a pressure-driven flow past striped slip-stick surfaces with arbitrary local slip at the gas sectors. We derive analytical formulas for maximal (longitudinal) and minimal (transverse) directional effective slip lengths that can be used for any surface slip fraction (validated by numerical calculations). By representing eigenvalues of the slip length-tensor, they allow us to obtain the effective slip for any orientation of stripes with respect to the mean flow. Our results imply that flow past stripes is controlled by the ratio of the local slip length to texture size. In case of a large (compared to the texture period) slip at the gas areas, surface anisotropy leads to a tensorial effective slip, by attaining the values predicted earlier for a perfect local slip. Both effective slip lengths and anisotropy of the flow decrease when local slip becomes of the order of texture period. In the case of small slip, we predict simple surface-averaged, isotropic flows (independent of orientation). These results provide a framework for the rational design of super-hydrophobic surfaces and devices.Comment: 10 pages, 4 figures, revised versio

    Elasticity of polyelectrolyte multilayer microcapsules

    Full text link
    We present a novel approach to probe elastic properties of polyelectrolyte multilayer microcapsules. The method is based on measurements of the capsule load-deformation curves with the atomic force microscope. The experiment suggests that at low applied load deformations of the capsule shell are elastic. Using elastic theory of membranes we relate force, deformation, elastic moduli, and characteristic sizes of the capsule. Fitting to the prediction of the model yields the lower limit for Young's modulus of the polyelectrolyte multilayers of the order of 1-100 MPa, depending on the template and solvent used for its dissolution. These values correspond to Young's modulus of an elastomer

    'Gas cushion' model and hydrodynamic boundary conditions for superhydrophobic textures

    Full text link
    Superhydrophobic Cassie textures with trapped gas bubbles reduce drag, by generating large effective slip, which is important for a variety of applications that involve a manipulation of liquids at the small scale. Here we discuss how the dissipation in the gas phase of textures modifies their friction properties. We propose an operator method, which allows us the mapping of the flow in the gas subphase to a local slip boundary condition at the liquid/gas interface. The determined uniquely local slip length depends on the viscosity contrast and underlying topography, and can be immediately used to evaluate an effective slip of the texture. Besides superlubricating Cassie surfaces our approach is valid for rough surfaces impregnated by a low-viscosity 'lubricant', and even for Wenzel textures, where a liquid follows the surface relief. These results provide a framework for the rational design of textured surfaces for numerous applications.Comment: 8 pages, 6 figure

    Drag force on a sphere moving towards an anisotropic super-hydrophobic plane

    Full text link
    We analyze theoretically a high-speed drainage of liquid films squeezed between a hydrophilic sphere and a textured super-hydrophobic plane, that contains trapped gas bubbles. A super-hydrophobic wall is characterized by parameters LL (texture characteristic length), b1b_1 and b2b_2 (local slip lengths at solid and gas areas), and Ï•1\phi_1 and Ï•2\phi_2 (fractions of solid and gas areas). Hydrodynamic properties of the plane are fully expressed in terms of the effective slip-length tensor with eigenvalues that depend on texture parameters and HH (local separation). The effect of effective slip is predicted to decrease the force as compared with expected for two hydrophilic surfaces and described by the Taylor equation. The presence of additional length scales, LL, b1b_1 and b2b_2, implies that a film drainage can be much richer than in case of a sphere moving towards a hydrophilic plane. For a large (compared to LL) gap the reduction of the force is small, and for all textures the force is similar to expected when a sphere is moving towards a smooth hydrophilic plane that is shifted down from the super-hydrophobic wall. The value of this shift is equal to the average of the eigenvalues of the slip-length tensor. By analyzing striped super-hydrophobic surfaces, we then compute the correction to the Taylor equation for an arbitrary gap. We show that at thinner gap the force reduction becomes more pronounced, and that it depends strongly on the fraction of the gas area and local slip lengths. For small separations we derive an exact equation, which relates a correction for effective slip to texture parameters. Our analysis provides a framework for interpreting recent force measurements in the presence of super-hydrophobic surface.Comment: 9 pages, 5 figures, submitted to PRE; EPAPS file include

    Electro-osmosis on anisotropic super-hydrophobic surfaces

    Full text link
    We give a general theoretical description of electro-osmotic flow at striped super-hydrophobic surfaces in a thin double layer limit, and derive a relation between the electro-osmotic mobility and hydrodynamic slip-length tensors. Our analysis demonstrates that electro-osmotic flow shows a very rich behavior controlled by slip length and charge at the gas sectors. In case of uncharged liquid-gas interface, the flow is the same or inhibited relative to flow in homogeneous channel with zero interfacial slip. By contrast, it can be amplified by several orders of magnitude provided slip regions are uniformly charged. When gas and solid regions are oppositely charged, we predict a flow reversal, which suggests a possibility of huge electro-osmotic slip even for electro-neutral surfaces. On the basis of these observations we suggest strategies for practical microfluidic mixing devices. These results provide a framework for the rational design of super-hydrophobic surfaces.Comment: 4 pages, 4 figures; submitted to PRL Revised version: several references added, typos corrected. Supplementary file was restructured, the second part of the original EPAPS was removed and is supposed to be published as a separate pape

    Anisotropic flow in striped superhydrophobic channels

    Full text link
    We report results of dissipative particle dynamics simulations and develop a semi-analytical theory of an anisotropic flow in a parallel-plate channel with two superhydrophobic striped walls. Our approach is valid for any local slip at the gas sectors and an arbitrary distance between the plates, ranging from a thick to a thin channel. It allows us to optimize area fractions, slip lengths, channel thickness and texture orientation to maximize a transverse flow. Our results may be useful for extracting effective slip tensors from global measurements, such as the permeability of a channel, in experiments or simulations, and may also find applications in passive microfluidic mixing.Comment: 11 pages, 10 figures, submitted to J. Chem. Phy
    • …
    corecore