7,559 research outputs found
Self-Stimulated Undulator Radiation and its Possible Applications
We investigated the phenomena of self-stimulation of incoherent emission from
an undulator installed in the linear accelerator or quasi-isochronous storage
ring. We discuss possible applications of these phenomena for the beam physics
also.Comment: 14 pages, 4 figure
Organismal complexity, cell differentiation and gene expression: human over mouse
We present a molecular and cellular phenomenon underlying the intriguing increase in phenotypic organizational complexity. For the same set of human–mouse orthologous genes (11 534 gene pairs) and homologous tissues (32 tissue pairs), human shows a greater fraction of tissue-specific genes and a greater ratio of the total expression of tissue-specific genes to housekeeping genes in each studied tissue, which suggests a generally higher level of evolutionary cell differentiation (specialization). This phenomenon is spectacularly more pronounced in those human tissues that are more directly involved in the increase of complexity, longevity and body size (i.e. it is reflected on the organismal level as well). Genes with a change in expression breadth show a greater human–mouse divergence of promoter regions and encoded proteins (i.e. the functional genomics data are supported by the structural analysis). Human also shows the higher expression of translation machinery. The upstream untranslated regions (5′UTRs) of human mRNAs are longer than mouse 5′UTRs (even after correction for the difference in genome sizes) and contain more uAUG codons, which suggest a more complex regulation at the translational level in human cells (and agrees well with the augmented cell specialization)
Differences in the trophic ecology of micronekton driven by diel vertical migration.
Many species of micronekton perform diel vertical migrations (DVMs), which ultimately contributes to carbon export to the deep sea. However, not all micronekton species perform DVM, and the nonmigrators, which are often understudied, have different energetic requirements that might be reflected in their trophic ecology. We analyze bulk tissue and whole animal stable nitrogen isotopic compositions (δ 15N values) of micronekton species collected seasonally between 0 and 1250 m depth to explore differences in the trophic ecology of vertically migrating and nonmigrating micronekton in the central North Pacific. Nonmigrating species exhibit depth-related increases in δ 15N values mirroring their main prey, zooplankton. Higher variance in δ 15N values of bathypelagic species points to the increasing reliance of deeper dwelling micronekton on microbially reworked, very small suspended particles. Migrators have higher δ 15N values than nonmigrators inhabiting the epipelagic zone, suggesting the consumption of material during the day at depth, not only at night when they migrate closer to the surface. Migrating species also appear to eat larger prey and exhibit a higher range of variation in δ 15N values seasonally than nonmigrators, likely because of their higher energy needs. The dependence on material at depth enriched in 15N relative to surface particles is higher in migratory fish that ascend only to the lower epipelagic zone. Our results confirm that stark differences in the food habits and dietary sources of micronekton species are driven by vertical migrations
Psi-Series Solution of Fractional Ginzburg-Landau Equation
One-dimensional Ginzburg-Landau equations with derivatives of noninteger
order are considered. Using psi-series with fractional powers, the solution of
the fractional Ginzburg-Landau (FGL) equation is derived. The leading-order
behaviours of solutions about an arbitrary singularity, as well as their
resonance structures, have been obtained. It was proved that fractional
equations of order with polynomial nonlinearity of order have the
noninteger power-like behavior of order near the singularity.Comment: LaTeX, 19 pages, 2 figure
- …