859 research outputs found
Crystal growth and ambient and high pressure study of the reentrant superconductor Tm_2Fe_3Si_5
We report single crystal growth of the reentrant superconductor Tm_2Fe_3Si_5,
and measurements of the anisotropic static magnetic susceptibility \chi(T) and
isothermal magnetization M(H), ac susceptibility \chi_ac(T), electrical
resistivity \rho(T) and heat capacity C(T) at ambient pressure and \chi_ac(T)
at high pressure. The magnetic susceptibility along the c-axis \chi_c(T) shows
a small maximum around 250 K and does not follow the Curie-Weiss behavior while
the magnetic susceptibility along the a-axis \chi_a(T) follows a Curie-Weiss
behavior between 130 K and 300 K with a Weiss temperature \theta and an
effective magnetic moment \mu_eff which depend on the temperature range of the
fit. The easy axis of magnetization is perpendicular to the c-axis and
\chi_a/\chi_c = 3.2 at 1.8 K. The ambient pressure \chi_ac(T) and C(T)
measurements confirm bulk antiferromagnetic ordering at T_N = 1.1 K. The sharp
drop in \chi_ac below T_N is suggestive of the existence of a spin-gap. We
observe superconductivity only under applied pressures P\geq 2 kbar. The
temperature-pressure phase diagram showing the non-monotonic dependence of the
superconducting transition temperature T_c on pressure P is presented.Comment: 7 pages, 8 figure
Determination of the Joint Confidence Region of Optimal Operating Conditions in Robust Design by Bootstrap Technique
Robust design has been widely recognized as a leading method in reducing
variability and improving quality. Most of the engineering statistics
literature mainly focuses on finding "point estimates" of the optimum operating
conditions for robust design. Various procedures for calculating point
estimates of the optimum operating conditions are considered. Although this
point estimation procedure is important for continuous quality improvement, the
immediate question is "how accurate are these optimum operating conditions?"
The answer for this is to consider interval estimation for a single variable or
joint confidence regions for multiple variables.
In this paper, with the help of the bootstrap technique, we develop
procedures for obtaining joint "confidence regions" for the optimum operating
conditions. Two different procedures using Bonferroni and multivariate normal
approximation are introduced. The proposed methods are illustrated and
substantiated using a numerical example.Comment: Two tables, Three figure
Magnetic Ordering and Superconductivity in the REIrGe (RE = Y, La-Tm, Lu) System
We find that the compounds for RE = Y, La-Dy, crystallize in the tetragonal
Ibam (UCoSi type) structure whereas the compounds for RE = Er-Lu,
crystallize in a new orthorhombic structure with a space group Pmmn. Samples of
HoIrGe were always found to be multiphase. The compounds for RE = Y
to Dy which adopt the Ibam type structure show a metallic resistivity whereas
the compounds with RE = Er, Tm and Lu show an anomalous behavior in the
resistivity with a semiconducting increase in as we go down in
temperature from 300K. Interestingly we had earlier found a positive
temperature coefficient of resistivity for the Yb sample in the same
temperature range. We will compare this behavior with similar observations in
the compounds RERuGe and REBiPt. LaIrGe and
YIrGe show bulk superconductivity below 1.8K and 2.5K respectively.
Our results confirm that CeIrGe shows a Kondo lattice behavior and
undergoes antiferromagnetic ordering below 8.5K. Most of the other compounds
containing magnetic rare-earth elements undergo a single antiferromagnetic
transition at low temperatures (T12K) while GdIrGe,
DyIrGe and NdIrGe show multiple transitions. The
T's for most of the compounds roughly scale with the de Gennes factor.
which suggests that the chief mechanism of interaction leading to the magnetic
ordering of the magnetic moments may be the RKKY interaction.Comment: 25 pages, 16 figure
Unusual Ground State Properties of the Kondo-Lattice Compound Yb2Ir3Ge5
We report sample preparation, structure, electrical resistivity, magnetic
susceptibility and heat capacity studies of a new compound YbIrGe.
We find that this compound crystallizes in an orthorhombic structure with a
space group PMMN unlike the compound CeIrGe which crystallizes in
the tetragonal IBAM (UCoSi type) structure. Our resistivity
measurements indicate that the compound YbIrGe behaves like a
typical Kondo lattice system with no ordering down to 0.4 K. However, a
Curie-Weiss fit of the inverse magnetic susceptibility above 100 K gives an
effective moment of only 3.66 which is considerably less than the
theoretical value of 4.54 for magnetic Yb ions. The value of
= -15.19 K is also considerably higher indicating the presence of
strong hybridization. An upturn in the low temperature heat capacity gives an
indication that the system may order magnetically just below the lowest
temperature of our heat capacity measurements (0.4 K). The structure contains
two sites for Yb ions and the present investigation suggests that Yb may be
trivalent in one site while it may be significantly lower (close to divalent)
in the other.Comment: 9 pages, 4 figures. submitted to Phys. Rev.
Antiferromagnetic ordering in the Kondo lattice system YbFeSi
Compounds belonging to the RFeSi series exhibit unusual
superconducting and magnetic properties. Although a number of studies have been
made on the first reentrant antiferromagnet superconductor TmFeSi,
the physical properties of YbFeSi are largely unexplored. In this
work, we attempt to provide a comprehensive study of bulk properties such as,
resistivity, susceptibility and heat-capacity of a well characterized
polycrystalline YbFeSi. Our measurements indicate that Yb
moments order antiferromagnetically below 1.7 K. Moreover, the system behaves
as a Kondo lattice with large Sommerfeld coefficient () of 0.5~J/Yb mol
K at 0.3 K, which is well below T. The absence of superconductivity
in YbFeSi down to 0.3 K at ambient pressure is attributed to the
presence of the Kondo effect.Comment: 10 pages, 3 figures, tex document. A fuller version has appeared in
PRB. Here we have omitted the figures showing the crystal structure and the
fitting of the X-ray pattern. Also the table with the lattice parameters
obtained from fitting has been remove
Field-induced water electrolysis switches an oxide semiconductor from an insulator to a metal
Here we demonstrate that water-infiltrated nanoporous glass electrically
switches an oxide semiconductor from an insulator to metal. We fabricated the
field effect transistor structure on an oxide semiconductor, SrTiO3, using
100%-water-infiltrated nanoporous glass - amorphous 12CaO*7Al2O3 - as the gate
insulator. For positive gate voltage, electron accumulation, water electrolysis
and electrochemical reduction occur successively on the SrTiO3 surface at room
temperature, leading to the formation of a thin (~3 nm) metal layer with an
extremely high electron concentration of 10^15-10^16 cm^-2, which exhibits
exotic thermoelectric behaviour.Comment: 21 pages, 12 figure
- …