581 research outputs found

    CancerLinker: Explorations of Cancer Study Network

    Full text link
    Interactive visualization tools are highly desirable to biologist and cancer researchers to explore the complex structures, detect patterns and find out the relationships among bio-molecules responsible for a cancer type. A pathway contains various bio-molecules in different layers of the cell which is responsible for specific cancer type. Researchers are highly interested in understanding the relationships among the proteins of different pathways and furthermore want to know how those proteins are interacting in different pathways for various cancer types. Biologists find it useful to merge the data of different cancer studies in a single network and see the relationships among the different proteins which can help them detect the common proteins in cancer studies and hence reveal the pattern of interactions of those proteins. We introduce the CancerLinker, a visual analytic tool that helps researchers explore cancer study interaction network. Twenty-six cancer studies are merged to explore pathway data and bio-molecules relationships that can provide the answers to some significant questions which are helpful in cancer research. The CancerLinker also helps biologists explore the critical mutated proteins in multiple cancer studies. A bubble graph is constructed to visualize common protein based on its frequency and biological assemblies. Parallel coordinates highlight patterns of patient profiles (obtained from cBioportal by WebAPI services) on different attributes for a specified cancer studyComment: 7 pages, 9 figure

    Reinforcement Learning in Stock Trading

    Get PDF
    Using machine learning techniques in financial markets, particularly in stock trading, attracts a lot of attention from both academia and practitioners in recent years. Researchers have studied different supervised and unsupervised learning techniques to either predict stock price movement or make decisions in the market. In this paper we study the usage of reinforcement learning techniques in stock trading. We evaluate the approach on real-world stock dataset. We compare the deep reinforcement learning approach with state-of-the-art supervised deep learning prediction in real-world data. Given the nature of the market where the true parameters will never be revealed, we believe that the reinforcement learning has a lot of potential in decision-making for stock trading

    DEVELOPMENT OF GENETIC ALGORITHM-BASED METHODOLOGY FOR SCHEDULING OF MOBILE ROBOTS

    Get PDF

    Investigating data mining techniques for extracting information from Alzheimer\u27s disease data

    Get PDF
    Data mining techniques have been used widely in many areas such as business, science, engineering and more recently in clinical medicine. These techniques allow an enormous amount of high dimensional data to be analysed for extraction of interesting information as well as the construction of models for prediction. One of the foci in health related research is Alzheimer\u27s disease which is currently a non-curable disease where diagnosis can only be confirmed after death via an autopsy. Using multi-dimensional data and the applications of data mining techniques, researchers hope to find biomarkers that will diagnose Alzheimer\u27s disease as early as possible. The primary purpose of this research project is to investigate the application of data mining techniques for finding interesting biomarkers from a set of Alzheimer\u27s disease related data. The findings from this project will help to analyse the data more effectively and contribute to methods of providing earlier diagnosis of the disease

    Studying machine learning techniques for intrusion detection systems

    Get PDF
    Intrusion detection systems (IDSs) have been studied widely in the computer security community for a long time. The recent development of machine learning techniques has boosted the performance of the intrusion detection systems significantly. However, most modern machine learning and deep learning algorithms are exhaustive of labeled data that requires a lot of time and effort to collect. Furthermore, it might be late until all the data is collected to train the model. In this study, we first perform a comprehensive survey of existing studies on using machine learning for IDSs. Hence we present two approaches to detect the network attacks. We present that by using a tree-based ensemble learning with feature engineering we can outperform state-of-the-art results in the field. We also present a new approach in selecting training data for IDSs hence by using a small subset of training data combined with some weak classification algorithms we can improve the performance of the detector while maintaining the low running cost

    Evolutionary approaches for feature selection in biological data

    Get PDF
    Data mining techniques have been used widely in many areas such as business, science, engineering and medicine. The techniques allow a vast amount of data to be explored in order to extract useful information from the data. One of the foci in the health area is finding interesting biomarkers from biomedical data. Mass throughput data generated from microarrays and mass spectrometry from biological samples are high dimensional and is small in sample size. Examples include DNA microarray datasets with up to 500,000 genes and mass spectrometry data with 300,000 m/z values. While the availability of such datasets can aid in the development of techniques/drugs to improve diagnosis and treatment of diseases, a major challenge involves its analysis to extract useful and meaningful information. The aims of this project are: 1) to investigate and develop feature selection algorithms that incorporate various evolutionary strategies, 2) using the developed algorithms to find the “most relevant” biomarkers contained in biological datasets and 3) and evaluate the goodness of extracted feature subsets for relevance (examined in terms of existing biomedical domain knowledge and from classification accuracy obtained using different classifiers). The project aims to generate good predictive models for classifying diseased samples from control

    A Survey of Vision Transformers in Autonomous Driving: Current Trends and Future Directions

    Full text link
    This survey explores the adaptation of visual transformer models in Autonomous Driving, a transition inspired by their success in Natural Language Processing. Surpassing traditional Recurrent Neural Networks in tasks like sequential image processing and outperforming Convolutional Neural Networks in global context capture, as evidenced in complex scene recognition, Transformers are gaining traction in computer vision. These capabilities are crucial in Autonomous Driving for real-time, dynamic visual scene processing. Our survey provides a comprehensive overview of Vision Transformer applications in Autonomous Driving, focusing on foundational concepts such as self-attention, multi-head attention, and encoder-decoder architecture. We cover applications in object detection, segmentation, pedestrian detection, lane detection, and more, comparing their architectural merits and limitations. The survey concludes with future research directions, highlighting the growing role of Vision Transformers in Autonomous Driving.Comment: 9 pages, 3 figure
    • …
    corecore