398 research outputs found

    SVIM: Structural Variant Identification using Mapped Long Reads

    No full text
    Motivation: Structural variants are defined as genomic variants larger than 50bp. They have been shown to affect more bases in any given genome than SNPs or small indels. Additionally, they have great impact on human phenotype and diversity and have been linked to numerous diseases. Due to their size and association with repeats, they are difficult to detect by shotgun sequencing, especially when based on short reads. Long read, single molecule sequencing technologies like those offered by Pacific Biosciences or Oxford Nanopore Technologies produce reads with a length of several thousand base pairs. Despite the higher error rate and sequencing cost, long read sequencing offers many advantages for the detection of structural variants. Yet, available software tools still do not fully exploit the possibilities. Results: We present SVIM, a tool for the sensitive detection and precise characterization of structural variants from long read data. SVIM consists of three components for the collection, clustering and combination of structural variant signatures from read alignments. It discriminates five different variant classes including similar types, such as tandem and interspersed duplications and novel element insertions. SVIM is unique in its capability of extracting both the genomic origin and destination of duplications. It compares favorably with existing tools in evaluations on simulated data and real datasets from PacBio and Nanopore sequencing machines. Availability and implementation: The source code and executables of SVIM are available on Github: github.com/eldariont/svim. SVIM has been implemented in Python 3 and published on bioconda and the Python Package Index. Supplementary information: Supplementary data are available at Bioinformatics online

    ModHMM: A Modular Supra-Bayesian Genome Segmentation Method

    Get PDF
    Genome segmentation methods are powerful tools to obtain cell type or tissue-specific genome-wide annotations and are frequently used to discover regulatory elements. However, traditional segmentation methods show low predictive accuracy and their data-driven annotations have some undesirable properties. As an alternative, we developed ModHMM, a highly modular genome segmentation method. Inspired by the supra-Bayesian approach, it incorporates predictions from a set of classifiers. This allows to compute genome segmentations by utilizing state-of-the-art methodology. We demonstrate the method on ENCODE data and show that it outperforms traditional segmentation methods not only in terms of predictive performance, but also in qualitative aspects. Therefore, ModHMM is a valuable alternative to study the epigenetic and regulatory landscape across and within cell types or tissues

    A biophysical approach to large-scale protein-DNA binding data

    Get PDF
    About this book * Cutting-edge genome analysis methods from leading bioinformaticians An accurate description of current scientific developments in the field of bioinformatics and computational implementation is presented by research of the BioSapiens Network of Excellence. Bioinformatics is essential for annotating the structure and function of genes, proteins and the analysis of complete genomes and to molecular biology and biochemistry. Included is an overview of bioinformatics, the full spectrum of genome annotation approaches including; genome analysis and gene prediction, gene regulation analysis and expression, genome variation and QTL analysis, large scale protein annotation of function and structure, annotation and prediction of protein interactions, and the organization and annotation of molecular networks and biochemical pathways. Also covered is a technical framework to organize and represent genome data using the DAS technology and work in the annotation of two large genomic sets: HIV/HCV viral genomes and splicing alternatives potentially encoded in 1% of the human genome

    Quantifying the tissue-specific regulatory information within enhancer DNA sequences

    Get PDF
    Recent efforts to measure epigenetic marks across a wide variety of different cell types and tissues provide insights into the cell type-specific regulatory landscape. We use these data to study whether there exists a correlate of epigenetic signals in the DNA sequence of enhancers and explore with computational methods to what degree such sequence patterns can be used to predict cell type-specific regulatory activity. By constructing classifiers that predict in which tissues enhancers are active, we are able to identify sequence features that might be recognized by the cell in order to regulate gene expression. While classification performances vary greatly between tissues, we show examples where our classifiers correctly predict tissue-specific regulation from sequence alone. We also show that many of the informative patterns indeed harbor transcription factor footprints

    Association Plots: Visualizing associations in high-dimensional correspondence analysis biplots

    Get PDF
    In molecular biology, just as in many other fields of science, data often come in the form of matrices or contingency tables with many measurements (rows) for a set of variables (columns). While projection methods like Principal Component Analysis or Correspondence Analysis can be applied for obtaining an overview of such data, in cases where the matrix is very large the associated loss of information upon projection into two or three dimensions may be dramatic. However, when the set of variables can be grouped into clusters, this opens up a new angle on the data. We focus on the question which measurements are associated to a cluster and distinguish it from other clusters. Correspondence Analysis employs a geometry geared towards answering this question. We exploit this feature in order to introduce Association Plots for visualizing cluster-specific measurements in complex data. Association Plots are two-dimensional, independent of the size of data matrix or cluster, and depict the measurements associated to a cluster of variables. We demonstrate our method first on a small data set and then on a genomic example comprising more than 10,000 conditions. We will show that Association Plots can clearly highlight those measurements which characterize a cluster of variables

    Predicting the outcome of renal transplantation

    Get PDF
    ObjectiveRenal transplantation has dramatically improved the survival rate of hemodialysis patients. However, with a growing proportion of marginal organs and improved immunosuppression, it is necessary to verify that the established allocation system, mostly based on human leukocyte antigen matching, still meets today's needs. The authors turn to machine-learning techniques to predict, from donor-recipient data, the estimated glomerular filtration rate (eGFR) of the recipient 1 year after transplantation.DesignThe patient's eGFR was predicted using donor-recipient characteristics available at the time of transplantation. Donors' data were obtained from Eurotransplant's database, while recipients' details were retrieved from Charite Campus Virchow-Klinikum's database. A total of 707 renal transplantations from cadaveric donors were included.MeasurementsTwo separate datasets were created, taking features with <10% missing values for one and <50% missing values for the other. Four established regressors were run on both datasets, with and without feature selection.ResultsThe authors obtained a Pearson correlation coefficient between predicted and real eGFR (COR) of 0.48. The best model for the dataset was a Gaussian support vector machine with recursive feature elimination on the more inclusive dataset. All results are available at http://transplant.molgen.mpg.de/.LimitationsFor now, missing values in the data must be predicted and filled in. The performance is not as high as hoped, but the dataset seems to be the main cause.ConclusionsPredicting the outcome is possible with the dataset at hand (COR=0.48). Valuable features include age and creatinine levels of the donor, as well as sex and weight of the recipient

    SVIM-asm: structural variant detection from haploid and diploid genome assemblies

    Get PDF
    Motivation With the availability of new sequencing technologies, the generation of haplotype-resolved genome assemblies up to chromosome scale has become feasible. These assemblies capture the complete genetic information of both parental haplotypes, increase structural variant (SV) calling sensitivity and enable direct genotyping and phasing of SVs. Yet, existing SV callers are designed for haploid genome assemblies only, do not support genotyping or detect only a limited set of SV classes. Results We introduce our method SVIM-asm for the detection and genotyping of six common classes of SVs from haploid and diploid genome assemblies. Compared against the only other existing SV caller for diploid assemblies, DipCall, SVIM-asm detects more SV classes and reached higher F1 scores for the detection of insertions and deletions on two recently published assemblies of the HG002 individual. Availability and implementation SVIM-asm has been implemented in Python and can be easily installed via bioconda. Its source code is available at github.com/eldariont/svim-asm

    Comparative analysis of cell cycle regulated genes in eukaryotes

    Get PDF
    We compared microarray experiments on cell cycle of three model eukaryotes: budding and fission yeast and human cells. Only 112 orthologous groups were cyclic in the three model organisms. The common set of cyclic orthologs includes many taking part in the cell cycle progression, like cyclin B homologs, CDC5, SCH9, DSK2, ZPR1. Proteins involved in DNA replication included histones, some checkpoint kinases and some proteins regulating DNA damage and repair. Conserved cyclic proteins involved in cytokinesis included myosins and kinesins. Many groups of genes related to translation and other metabolic processes were also cyclic in all three organisms. This reflects rebuilding of cellular components after the replication and changes of metabolism during the cell cycle. Many genes important in cell cycle control are not cyclic or not conserved. This includes transcription factors implicated in the regulation of budding yeast cell cycle. The partially overlapping roles of regulatory proteins might allow the evolutionary substitution of components of cell cycle

    DNA Motif Match Statistics Without Poisson Approximation

    No full text
    Transcription factors (TFs) play a crucial role in gene regulation by binding to specific regulatory sequences. The sequence motifs recognized by a TF can be described in terms of position frequency matrices. Searching for motif matches with a given position frequency matrix is achieved by employing a predefined score cutoff and subsequently counting the number of matches above this cutoff. In this article, we approximate the distribution of the number of motif matches based on a novel dynamic programming approach, which accounts for higher order sequence background (e.g., as is characteristic for CpG islands) and overlapping motif matches on both DNA strands. A comparison with our previously published compound Poisson approximation and a binomial approximation demonstrates that in particular for relaxed score thresholds, the dynamic programming approach yields more accurate results

    Detection of interacting transcription factors in human tissues using predicted DNA binding affinity

    Get PDF
    BACKGROUND: Tissue-specific gene expression is generally regulated by combinatorial interactions among transcription factors (TFs) which bind to the DNA. Despite this known fact, previous discoveries of the mechanism that controls gene expression usually consider only a single TF. RESULTS: We provide a prediction of interacting TFs in 22 human tissues based on their DNA-binding affinity in promoter regions. We analyze all possible pairs of 130 vertebrate TFs from the JASPAR database. First, all human promoter regions are scanned for single TF-DNA binding affinities with TRAP and for each TF a ranked list of all promoters ordered by the binding affinity is created. We then study the similarity of the ranked lists and detect candidates for TF-TF interaction by applying a partial independence test for multiway contingency tables. Our candidates are validated by both known protein-protein interactions (PPIs) and known gene regulation mechanisms in the selected tissue. We find that the known PPIs are significantly enriched in the groups of our predicted TF-TF interactions (2 and 7 times more common than expected by chance). In addition, the predicted interacting TFs for studied tissues (liver, muscle, hematopoietic stem cell) are supported in literature to be active regulators or to be expressed in the corresponding tissue. CONCLUSIONS: The findings from this study indicate that tissue-specific gene expression is regulated by one or two central regulators and a large number of TFs interacting with these central hubs. Our results are in agreement with recent experimental studies
    • …
    corecore