51 research outputs found

    Scattering of two spinning black holes in post-Minkowskian gravity, to all orders in spin, and effective-one-body mappings

    Full text link
    We demonstrate equivalences, under simple mappings, between the dynamics of three distinct systems---(i) an arbitrary-mass-ratio two-spinning-black-hole system, (ii) a spinning test black hole in a background Kerr spacetime, and (iii) geodesic motion in Kerr---when each is considered in the first post-Minkowskian (1PM) approximation to general relativity, i.e. to linear order GG but to all orders in 1/c1/c, and to all orders in the black holes' spins, with all orders in the multipole expansions of their linearized gravitational fields. This is accomplished via computations of the net results of weak gravitational scattering encounters between two spinning black holes, namely the net O(G)O(G) changes in the holes' momenta and spins as functions of the incoming state. The results are given in remarkably simple closed forms, found by solving effective Mathisson-Papapetrou-Dixon-type equations of motion for a spinning black hole in conjunction with the linearized Einstein equation, with appropriate matching to the Kerr solution. The scattering results fully encode the gauge-invariant content of a canonical Hamiltonian governing binary-black-hole dynamics at 1PM order, for generic (unbound and bound) orbits and spin orientations. We deduce one such Hamiltonian, which reproduces and resums the 1PM parts of all such previous post-Newtonian results, and which directly manifests the equivalences with the test-body limits via simple effective-one-body mappings.Comment: 26 pages, 2 figures. v2: added references; corrected typos in Appendix A; added missing link in Eq. (B11

    Properties of an affine transport equation and its holonomy

    Full text link
    An affine transport equation was used recently to study properties of angular momentum and gravitational-wave memory effects in general relativity. In this paper, we investigate local properties of this transport equation in greater detail. Associated with this transport equation is a map between the tangent spaces at two points on a curve. This map consists of a homogeneous (linear) part given by the parallel transport map along the curve plus an inhomogeneous part, which is related to the development of a curve in a manifold into an affine tangent space. For closed curves, the affine transport equation defines a "generalized holonomy" that takes the form of an affine map on the tangent space. We explore the local properties of this generalized holonomy by using covariant bitensor methods to compute the generalized holonomy around geodesic polygon loops. We focus on triangles and "parallelogramoids" with sides formed from geodesic segments. For small loops, we recover the well-known result for the leading-order linear holonomy (∼\sim Riemann ×\times area), and we derive the leading-order inhomogeneous part of the generalized holonomy (∼\sim Riemann ×\times area3/2^{3/2}). Our bitensor methods let us naturally compute higher-order corrections to these leading results. These corrections reveal the form of the finite-size effects that enter into the holonomy for larger loops; they could also provide quantitative errors on the leading-order results for finite loops.Comment: 18 pages, 4 figures, new short section (Sec. 5) in v3; updated to match article published in GR

    Scattering of Spinning Black Holes from Exponentiated Soft Factors

    Full text link
    We provide evidence that the classical scattering of two spinning black holes is controlled by the soft expansion of exchanged gravitons. We show how an exponentiation of Cachazo-Strominger soft factors, acting on massive higher-spin amplitudes, can be used to find spin contributions to the aligned-spin scattering angle, conjecturally extending previously known results to higher orders in spin at one-loop order. The extraction of the classical limit is accomplished via the on-shell leading-singularity method and using massive spinor-helicity variables. The three-point amplitude for arbitrary-spin massive particles minimally coupled to gravity is expressed in an exponential form, and in the infinite-spin limit it matches the effective stress-energy tensor of the linearized Kerr solution. A four-point gravitational Compton amplitude is obtained from an extrapolated soft theorem, equivalent to gluing two exponential three-point amplitudes, and becomes itself an exponential operator. The construction uses these amplitudes to: 1) recover the known tree-level scattering angle at all orders in spin, 2) recover the known one-loop linear-in-spin interaction, 3) match a previous conjectural expression for the one-loop scattering angle at quadratic order in spin, 4) propose new one-loop results through quartic order in spin. These connections link the computation of higher-multipole interactions to the study of deeper orders in the soft expansion.Comment: 29 pages + appendices + refs, 3 figures; v3 minor corrections, journal versio

    Hyperbolic scattering of spinning particles by a Kerr black hole

    Full text link
    We investigate the scattering of a spinning test particle by a Kerr black hole within the Mathisson-Papapetrou-Dixon model to linear order in spin. The particle's spin and orbital angular momentum are taken to be aligned with the black hole's spin. Both the particle's mass and spin length are assumed to be small in comparison with the characteristic length scale of the background curvature, in order to avoid backreaction effects. We analytically compute the modifications due to the particle's spin to the scattering angle, the periastron shift, and the condition for capture by the black hole, extending previous results valid for the nonrotating Schwarzschild background. Finally, we discuss how to generalize the present analysis beyond the linear approximation in spin, including spin-squared corrections in the case of a black-hole-like quadrupolar structure for the extended test body.Comment: 12 pages, 3 figures, revtex macro

    Gravitational waves from spinning binary black holes at the leading post-Newtonian orders at all orders in spin

    Full text link
    We determine the binding energy, the total gravitational wave energy flux, and the gravitational wave modes for a binary of rapidly spinning black holes, working in linearized gravity and at leading orders in the orbital velocity, but to all orders in the black holes' spins. Though the spins are treated nonperturbatively, surprisingly, the binding energy and the flux are given by simple analytical expressions which are finite (respectively third- and fifth-order) polynomials in the spins. Our final results are restricted to the important case of quasi-circular orbits with the black holes' spins aligned with the orbital angular momentum.Comment: 16 pages, 1 figure; updated to match published versio

    Canonical Hamiltonian for an extended test body in curved spacetime: To quadratic order in spin

    Get PDF
    We derive a Hamiltonian for an extended spinning test body in a curved background spacetime, to quadratic order in the spin, in terms of three-dimensional position, momentum, and spin variables having canonical Poisson brackets. This requires a careful analysis of how changes of the spin supplementary condition are related to shifts of the body's representative worldline and transformations of the body's multipole moments, and we employ bitensor calculus for a precise framing of this analysis. We apply the result to the case of the Kerr spacetime and thereby compute an explicit canonical Hamiltonian for the test-body limit of the spinning two-body problem in general relativity, valid for generic orbits and spin orientations, to quadratic order in the test spin. This fully relativistic Hamiltonian is then expanded in post-Newtonian orders and in powers of the Kerr spin parameter, allowing comparisons with the test-mass limits of available post-Newtonian results. Both the fully relativistic Hamiltonian and the results of its expansion can inform the construction of waveform models, especially effective-one-body models, for the analysis of gravitational waves from compact binaries.Comment: RevTeX, 25 pages, 2 figures. v2: Updated to match PRD version; further references added; some changes in presentation and notation; typographical errors corrected, most notably in Eqs. (7.51) and (7.58

    Hairy binary black holes in Einstein-Maxwell-dilaton theory and their effective-one-body description

    Full text link
    In General Relativity and many modified theories of gravity, isolated black holes (BHs) cannot source massless scalar fields. Einstein-Maxwell-dilaton (EMd) theory is an exception: through couplings both to electromagnetism and (non-minimally) to gravity, a massless scalar field can be generated by an electrically charged BH. In this work, we analytically model the dynamics of binaries comprised of such scalar-charged ("hairy") BHs. While BHs are not expected to have substantial electric charge within the Standard Model of particle physics, nearly-extremally charged BHs could occur in models of minicharged dark matter and dark photons. We begin by studying the test-body limit for a binary BH in EMd theory, and we argue that only very compact binaries of nearly-extremally charged BHs can manifest non-perturbative phenomena similar to those found in certain scalar-tensor theories. Then, we use the post-Newtonian approximation to study the dynamics of binary BHs with arbitrary mass ratios. We derive the equations governing the conservative and dissipative sectors of the dynamics at next-to-leading order, use our results to compute the Fourier-domain gravitational waveform in the stationary-phase approximation, and compute the number of useful cycles measurable by the Advanced LIGO detector. Finally, we construct two effective-one-body (EOB) Hamiltonians for binary BHs in EMd theory: one that reproduces the exact test-body limit and another whose construction more closely resembles similar models in General Relativity, and thus could be more easily integrated into existing EOB waveform models used in the data analysis of gravitational-wave events by the LIGO and Virgo collaborations.Comment: 36 pages, 12 figures, updated to match published versio
    • …
    corecore