8 research outputs found

    Mechanical Performance of Direct Restorative Techniques Utilizing Long Fibers for “Horizontal Splinting” to Reinforce Deep MOD Cavities-An Updated Literature Review

    Get PDF
    Excessive cavity preparation and root canal treatment leads to a weakened tooth structure with a lower resistance to fracture. Fiber reinforcement is frequently used to reinforce such teeth, and multiple fiber types and possible applications exist. Various methods for utilizing long fibers to internally splint the remaining cavity walls in the case of large mesio-occluso-distal (MOD) cavities have been proposed; however, no summary of their performance has been written up to now. Our study aims to review the available literature to evaluate and compare the mechanical performance of the different materials and methods utilized for horizontal splinting in large MOD cavities. Three independent authors performed a thorough literature search using PubMed, ScienceDirect, and Google Scholar up until January 2022. The authors selected in vitro studies that used long fibers placed horizontally in posterior teeth with large MOD cavities to reinforce these teeth. From 1683 potentially relevant articles, 11 publications met our inclusion criteria. Seven out of eleven studies showed that horizontal splinting with long fibers improved the fracture resistance of the restored teeth. Three articles showed no significant difference between the fracture resistance of the restored groups. Only one article reported a lower fracture resistance to the horizontally splinted group, compared to conventional direct composite restoration. Within the limitations of this review, evidence suggests that long fiber reinforcement could be used to improve the fracture resistance of heavily restored teeth.</p

    Mechanical Performance of Direct Restorative Techniques Utilizing Long Fibers for “Horizontal Splinting” to Reinforce Deep MOD Cavities-An Updated Literature Review

    Get PDF
    Excessive cavity preparation and root canal treatment leads to a weakened tooth structure with a lower resistance to fracture. Fiber reinforcement is frequently used to reinforce such teeth, and multiple fiber types and possible applications exist. Various methods for utilizing long fibers to internally splint the remaining cavity walls in the case of large mesio-occluso-distal (MOD) cavi- ties have been proposed; however, no summary of their performance has been written up to now. Our study aims to review the available literature to evaluate and compare the mechanical performance of the different materials and methods utilized for horizontal splinting in large MOD cavities. Three independent authors performed a thorough literature search using PubMed, ScienceDirect, and Google Scholar up until January 2022. The authors selected in vitro studies that used long fibers placed horizontally in posterior teeth with large MOD cavities to reinforce these teeth. From 1683 potentially relevant articles, 11 publications met our inclusion criteria. Seven out of eleven studies showed that horizontal splinting with long fibers improved the fracture resistance of the restored teeth. Three articles showed no significant difference between the fracture resistance of the restored groups. Only one article reported a lower fracture resistance to the horizontally splinted group, compared to conventional direct composite restoration. Within the limitations of this review, evidence suggests that long fiber reinforcement could be used to improve the fracture resistance of heavily restored teeth

    Fracture Behavior of Short Fiber-Reinforced Direct Restorations in Large MOD Cavities

    Get PDF
    The aim of this research was to study the impact of using a short fiber-reinforced composite (SFRC) core on the fatigue performance and fracture behavior of direct large posterior composite restorations. Moreover, the influence of the consistency (flowable or packable) of occlusal composite coverage was assessed. A total of 100 intact molars were collected and randomly distributed into five groups (n = 20). Deep mesio-occlusal-distal (MOD) cavities were prepared in all groups. After adhesive treatment and rebuilding the missing interproximal walls with conventional composite, the specimens in four experimental groups were restored by an SFRC core (everX Flow), which was applied and cured either in bulk or in oblique layers (each 2 mm thick). Packable (G-aenial Posterior) or flowable (G-aenial Injectable) conventional composites were used as a final occlusal layer. The control group was restored with only packable conventional composite. Fatigue survival was measured for all specimens using a cyclic loading machine until a fracture occurred or a total of 25,000 cycles was achieved. Kaplan–Meyer survival analyses were conducted, followed by pairwise log-rank post hoc comparisons. The static load-bearing capacity of surviving teeth was tested using a universal testing machine. Fracture patterns were evaluated visually. There was no statistically significant (p > 0.05) difference in terms of survival between the tested groups. All groups for which flowable SFRC was used showed statistically significantly higher load-bearing capacities compared to the control group (p < 0.05). There were no significant differences regarding fracture resistance among the fiber-reinforced study groups. Regarding the fracture pattern during the survival analysis, all specimens that received SFRC showed a dominantly restorable type of fracture, while the control specimens presented a dominantly non-restorable type. The use of flowable SFRC as a reinforcing core for large MOD direct restorations showed promising achievements regarding fracture behavior

    Fracture Behavior of Short Fiber-Reinforced Direct Restorations in Large MOD Cavities

    Get PDF
    The aim of this research was to study the impact of using a short fiber-reinforced composite (SFRC) core on the fatigue performance and fracture behavior of direct large posterior composite restorations. Moreover, the influence of the consistency (flowable or packable) of occlusal composite coverage was assessed. A total of 100 intact molars were collected and randomly distributed into five groups (n = 20). Deep mesio-occlusal-distal (MOD) cavities were prepared in all groups. After adhesive treatment and rebuilding the missing interproximal walls with conventional composite, the specimens in four experimental groups were restored by an SFRC core (everX Flow), which was applied and cured either in bulk or in oblique layers (each 2 mm thick). Packable (G-aenial Posterior) or flowable (G-aenial Injectable) conventional composites were used as a final occlusal layer. The control group was restored with only packable conventional composite. Fatigue survival was measured for all specimens using a cyclic loading machine until a fracture occurred or a total of 25,000 cycles was achieved. Kaplan-Meyer survival analyses were conducted, followed by pairwise log-rank post hoc comparisons. The static load-bearing capacity of surviving teeth was tested using a universal testing machine. Fracture patterns were evaluated visually. There was no statistically significant (p > 0.05) difference in terms of survival between the tested groups. All groups for which flowable SFRC was used showed statistically significantly higher load-bearing capacities compared to the control group (p </p

    Mechanical Performance of Direct Restorative Techniques Utilizing Long Fibers for &ldquo;Horizontal Splinting&rdquo; to Reinforce Deep MOD Cavities&mdash;An Updated Literature Review

    No full text
    Excessive cavity preparation and root canal treatment leads to a weakened tooth structure with a lower resistance to fracture. Fiber reinforcement is frequently used to reinforce such teeth, and multiple fiber types and possible applications exist. Various methods for utilizing long fibers to internally splint the remaining cavity walls in the case of large mesio-occluso-distal (MOD) cavities have been proposed; however, no summary of their performance has been written up to now. Our study aims to review the available literature to evaluate and compare the mechanical performance of the different materials and methods utilized for horizontal splinting in large MOD cavities. Three independent authors performed a thorough literature search using PubMed, ScienceDirect, and Google Scholar up until January 2022. The authors selected in vitro studies that used long fibers placed horizontally in posterior teeth with large MOD cavities to reinforce these teeth. From 1683 potentially relevant articles, 11 publications met our inclusion criteria. Seven out of eleven studies showed that horizontal splinting with long fibers improved the fracture resistance of the restored teeth. Three articles showed no significant difference between the fracture resistance of the restored groups. Only one article reported a lower fracture resistance to the horizontally splinted group, compared to conventional direct composite restoration. Within the limitations of this review, evidence suggests that long fiber reinforcement could be used to improve the fracture resistance of heavily restored teeth

    Mechanical Performance of Extensive Restorations Made with Short Fiber-Reinforced Composites without Coverage: A Systematic Review of In Vitro Studies

    No full text
    In recent years, composite resin materials have been the most frequently used materials for direct restorations of posterior teeth. These materials have some clinically relevant limitations due to their lack of fracture toughness, especially when used in larger cavities with high volume factors or when utilized as direct or indirect overlays or crown restorations. Recently, short-fiber-reinforced composite materials have been used in bi-structure restorations as a dentine substituting material due to their superior mechanical properties; however, there is no scientific consensus as to whether they can be used as full restorations. The aim of our review was to examine the available literature and gather scientific evidence on this matter. Two independent authors performed a thorough literature search using PubMed and ScienceDirect up until December 2023. This study followed the PRISMA guidelines, and the risk of bias was assessed using the QUIN tool. The authors selected in vitro studies that used short-fiber-reinforced composite materials as complete restorations, with a conventional composite material as a comparison group. Out of 2079 potentially relevant articles, 16 met our inclusion criteria. All of the included studies reported that the usage of short-fiber-reinforced composites improved the restoration’s load-bearing capacity. Fifteen of the included publications examined the fracture pattern, and thirteen of them reported a more favorable fracture outcome for the short-fiber-reinforced group. Only one article reported a more favorable fracture pattern for the control group; however, the difference between groups was not significant. Within the limitations of this review, the evidence suggests that short-fiber-reinforced composites can be used effectively as complete restorations to reinforce structurally compromised teeth
    corecore