115 research outputs found

    Role of Scaffold Protein Proline-, Glutamic Acid-, and Leucine-Rich Protein 1 (PELP1) in the Modulation of Adrenocortical Cancer Cell Growth

    Get PDF
    PELP1 acts as an estrogen receptor (ER) coactivator that exerts an essential role in the ER's functions. ER coregulators have a critical role in the progression and response to hormonal treatment of estrogen-dependent tumors. We previously demonstrated that, in adrenocortical carcinoma (ACC), ER\u3b1 is upregulated and that estradiol activates the IGF-II/IGF1R signaling pathways defining the role of this functional cross-talk in H295R ACC cell proliferation. The aim of this study was to determine if PELP1 is expressed in ACC and may play a role in promoting the interaction between ER\u3b1 and IGF1R allowing the activation of pathways important for ACC cell growth. The expression of PELP1 was detected by Western blot analysis in ACC tissues and in H295R cells. H295R cell proliferation decrease was assessed by A3-(4,5-Dimethylthiaoly)-2,5-diphenyltetrazolium bromide (MTT) assay and [3H] thymidine incorporation. PELP1 is expressed in ACC tissues and in H295R cells. Moreover, treatment of H295R with E2 or IGF-II induced a multiprotein complex formation consisting of PELP1, IGF1R, ER\u3b1, and Src that is involved in ERK1/2 rapid activation. PELP1/ER/IGF1R/c-Src complex identification as part of E2- and IGF-II-dependent signaling in ACC suggests PELP1 is a novel and more efficient potential target to reduce ACC growth

    Synthesis and evaluation of wound healing properties of hydro-diab hydrogel loaded with green-synthetized AGNPS: in vitro and in ex vivo studies

    Get PDF
    In diabetic patients, the presence of neuropathy, peripheral vascular diseases and ischemia, leads to the formation of foot ulcerations with a higher risk of infection because the normal response to bacterial infection is missing. In the aim to control and treat diabetic foot ulcerations (DFUs), wound dressings that are able to absorb exudate, to prevent infections, and to promote wound healing are needed. For this reason, the aim of the present research was to synthetize a biocompatible hydrogel (called HyDrO-DiAb) composed of carboxymethylcellulose loaded with silver nanoparticles (AgNPs) for the treatment of diabetic foot ulcers. In this study, AgNPs were obtained by a green synthesis and, then, were dissolved in a CMC hydrogel that, after a freeze drying process, becomes a flexible and porous structure. The in vitro and in ex vivo wound healing activity of the obtained HyDrO-DiAb hydrogel was evaluatedPeer ReviewedPostprint (published version

    GPER agonist G-1 decreases adrenocortical carcinoma (ACC) cell growth in vitro and in vivo

    Get PDF
    We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen receptor (GPER). Aim of this study was to investigate the effect of a non-steroidal GPER agonist G-1 in modulating ACC cell growth. We found that G-1 is able to exert a growth inhibitory effect on H295R cells both in vitro and, as xenograft model, in vivo. Treatment of H295R cells with G-1 induced cell cycle arrest, DNA damage and cell death by the activation of the intrinsic apoptotic mechanism. These events required sustained extracellular regulated kinase (ERK) 1/2 activation. Silencing of GPER by a specific shRNA partially reversed G-1-mediated cell growth inhibition without affecting ERK activation. These data suggest the existence of G-1 activated but GPER-independent effects that remain to be clarified. In conclusion, this study provides a rational to further study G-1 mechanism of action in order to include this drug as a treatment option to the limited therapy of ACC

    Estrogen Related Receptor Alpha (ERRα) a Bridge between Metabolism and Adrenocortical Cancer Progression

    Full text link
    The aim of this study was to investigate the metabolic changes that occur in adrenocortical cancer (ACC) cells in response to the modulation of Estrogen Related Receptor (ERR)α expression and the impact on ACC progression. Proteomics analysis and metabolic profiling highlighted an important role for ERRα in the regulation of ACC metabolism. Stable ERRα overexpression in H295R cells promoted a better mitochondrial fitness and prompted toward a more aggressive phenotype characterized by higher Vimentin expression, enhanced cell migration and spheroids formation. By contrast, a decrease in ERRα protein levels, by molecular (short hairpin RNA) and pharmacological (inverse agonist XCT790) approaches modified the energetic status toward a low energy profile and reduced Vimentin expression and ability to form spheroids. XCT790 produced similar effects on two additional ACC cell lines, SW13 and mitotane-resistant MUC-1 cells. Our findings show that ERRα is able to modulate the metabolic profile of ACC cells, and its inhibition can strongly prevent the growth of mitotane-resistant ACC cells and the progression of ACC cell models to a highly migratory phenotype. Consequently, ERRα can be considered an important target for the design of new therapeutic strategies to fight ACC progression

    A Phenylacetamide Resveratrol Derivative Exerts Inhibitory Effects on Breast Cancer Cell Growth

    Get PDF
    Resveratrol (RSV) is a natural compound that displays several pharmacological properties, including anti-cancer actions. However, its clinical application is limited because of its low solubility and bioavailability. Here, the antiproliferative and anti-inflammatory activity of a series of phenylacetamide RSV derivatives has been evaluated in several cancer cell lines. These derivatives contain a monosubstituted aromatic ring that could mimic the RSV phenolic nucleus and a longer flexible chain that could confer a better stability and bioavailability than RSV. Using MTT assay, we demonstrated that most derivatives exerted antiproliferative effects in almost all of the cancer cell lines tested. Among them, derivative 2, that showed greater bioavailability than RSV, was the most active, particularly against estrogen receptor positive (ER+) MCF7 and estrogen receptor negative (ER-) MDA-MB231 breast cancer cell lines. Moreover, we demonstrated that these derivatives, particularly derivative 2, were able to inhibit NO and ROS synthesis and PGE2 secretion in lipopolysaccharide (LPS)-activated U937 human monocytic cells (derived from a histiocytoma). In order to define the molecular mechanisms underlying the antiproliferative effects of derivative 2, we found that it determined cell cycle arrest at the G1 phase, modified the expression of cell cycle regulatory proteins, and ultimately triggered apoptotic cell death in both breast cancer cell lines. Taken together, these results highlight the studied RSV derivatives, particularly derivative 2, as promising tools for the development of new and more bioavailable derivatives useful in the treatment of breast cancer

    Cholesterol and Its Metabolites in Tumor Growth: Therapeutic Potential of Statins in Cancer Treatment

    Get PDF
    Cholesterol is essential for cell function and viability. It is a component of the plasma membrane and lipid rafts and is a precursor for bile acids, steroid hormones, and Vitamin D. As a ligand for estrogen-related receptor alpha (ESRRA), cholesterol becomes a signaling molecule. Furthermore, cholesterol-derived oxysterols activate liver X receptors (LXRs) or estrogen receptors (ERs). Several studies performed in cancer cells reveal that cholesterol synthesis is enhanced compared to normal cells. Additionally, high serum cholesterol levels are associated with increased risk for many cancers, but thus far, clinical trials with 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) have had mixed results. Statins inhibit cholesterol synthesis within cells through the inhibition of HMG-CoA reductase, the rate-limiting enzyme in the mevalonate and cholesterol synthetic pathway. Many downstream products of mevalonate have a role in cell proliferation, since they are required for maintenance of membrane integrity; signaling, as some proteins to be active must undergo prenylation; protein synthesis, as isopentenyladenine is an essential substrate for the modification of certain tRNAs; and cell-cycle progression. In this review starting from recent acquired findings on the role that cholesterol and its metabolites fulfill in the contest of cancer cells, we discuss the results of studies focused to investigate the use of statins in order to prevent cancer growth and metastasis

    Synthesis and cytotoxic activity evaluation of 2,3-thiazolidin-4-one derivatives on human breast cancer cell lines

    Get PDF
    It is well known that resveratrol (RSV) displayed cancer-preventing and anticancer properties but its clinical application is limited because of a low bioavailability and a rapid clearance from the circulation. Aim of this work was to synthesize pharmacologically active resveratrol analogs with an enhanced structural rigidity and bioavailability. In particular, we have synthesized a library of 2,3-thiazolidin-4-one derivatives in which a thiazolidinone nucleus connects two aromatic rings. Some of these compounds showed strong inhibitory effects on breast cancer cell growth. Our results indicate that some of thiazolidin-based resveratrol derivatives may become a new potent alternative tool for the treatment of human breast cancer

    Efficacy of safety catheter devices in the prevention of occupational needlestick injuries: applied research in Liguria Region (Italy)

    Get PDF
    Health care workers who use or may be exposed to needles are at increased risk of needlestick injuries which can lead to serious infections with bloodborne pathogens. These injuries can be avoided by eliminating the unnecessary use of needles, using safety devices. The present study was aimed at evaluating the impact of a safety-engineered device, with passive fully automatic needlestick protection, on the reduction of needlestick injuries among health care workers. The setting of the study was a network of five public health care institutions situated in a Northern Italian Region. Data about the type of device, the number of employees and the amount of catheter devices used per year were collected through regular meetings with health care workers over a period of five years.The most remarkable result of this study was represented by the huge risk reduction estimated for safety devices. Indeed, the risk of needlestick injuries due to conventional devices was found to be 25 fold higher than that observed for safety devices. However, it is noteworthy that a discernible part of this excess can be explained by the different background amount of devices used. Moreover, the descriptive analysis suggested that individuals with a poor/moderate training level showed a lower risk, albeit not statistically significant, than those with a good/high training.In conclusion, there is a convincing evidence of a causal connection between the introduction of safety devices and reduction in the occurrence of needlestick injuries. This consideration pushes to introduce safety devices into daily clinical practice

    Cholesterol as an Endogenous ERRα Agonist: A New Perspective to Cancer Treatment

    Get PDF
    The estrogen-related receptors (ERRs) are important members of nuclear receptors which contain three isoforms (α, β, and γ). ERRα is the best-characterized isoform expressed mainly in high-energy demanding tissues where it preferentially works in association with the peroxisome proliferator-activated receptor-γ co-activator 1α (PGC-1α) and PGC-1β. ERRα together with its cofactors modulates cellular metabolism, supports the growth of rapidly dividing cells, directs metabolic programs required for cell differentiation and maintains cellular energy homeostasis in differentiated cells. In cancer cells, the functional association between ERRα and PGC-1s is further influenced by oncogenic signals and induces metabolic programs favoring cell growth and proliferation as well as tumor progression. Recently, cholesterol has been identified as a natural ERRα ligand using a combined biochemical strategy. This new finding highlighted some important physiological aspects related to the use of cholesterol-lowering drugs such as statins and bisphosphonates. Even more meaningful is the link between increased cholesterol levels and certain cancer phenotypes characterized by an overexpressed ERRα such as mammary, prostatic, and colorectal cancers, where the metabolic adaptation affects many cancer processes. Moreover, high-energy demanding cancer-related processes are strictly related to the cross-talk between tumor cells and some key players of tumor microenvironment, such as tumor-associated macrophage that fuels cancer progression. Some evidence suggests that high cholesterol content and ERRα activity favor the inflammatory environment by the production of different cytokines. In this review, starting from the most recent observations on the physiological role of the new signaling activated by the natural ligand of ERRα, we propose a new hypothesis on the suitability to control cholesterol levels as a chance in modulating ERRα activity in those tumors in which its expression and activity are increased
    corecore