15 research outputs found

    Accurate simulation of ice and snow runoff for the mountainous terrain of the Kunlun Mountains, China

    Get PDF
    While mountain runoff provides great potential for the development and life quality of downstream populations, it also frequently causes seasonal disasters. The accurate modeling of hydrological processes in mountainous areas, as well as the amount of meltwater from ice and snow, is of great significance for the local sustainable development, hydropower regulations, and disaster prevention. In this study, an improved model, the Soil Water Assessment Tool with added ice-melt module (SWATAI) was developed based on the Soil Water Assessment Tool (SWAT), a semi-distributed hydrological model, to simulate ice and snow runoff. A temperature condition used to determine precipitation types has been added in the SWATAI model, along with an elevation threshold and an accumulative daily temperature threshold for ice melt, making it more consistent with the runoff process of ice and snow. As a supplementary reference, the comparison between the normalized difference vegetation index (NDVI) and the quantity of meltwater were conducted to verify the simulation results and assess the impact of meltwater on the ecology. Through these modifications, the accuracy of the daily flow simulation results has been considerably improved, and the contribution rate of ice and snow melt to the river discharge calculated by the model increased by 18.73%. The simulation comparison of the flooding process revealed that the accuracy of the simulated peak flood value by the SWATAI was 77.65% higher than that of the SWAT, and the temporal accuracy was 82.93% higher. The correlation between the meltwater calculated by the SWATAI and the NDVI has also improved significantly. This improved model could simulate the flooding processes with high temporal resolution in alpine regions. The simulation results could provide technical support for economic benefits and reasonable reference for flood prevention

    Spatio-seasonal variation of water quality influenced by land use and land cover in Lake Muhazi.

    Full text link
    peer reviewedUnderstanding the influence of land use/land cover (LULC) on water quality is pertinent to sustainable water management. This study aimed at assessing the spatio-seasonal variation of water quality in relation to land use types in Lake Muhazi, Rwanda. The National Sanitation Foundation Water Quality Index (NSF-WQI) was used to evaluate the anthropogenically-induced water quality changes. In addition to Principal Components Analysis (PCA), a Cluster Analysis (CA) was applied on 12-clustered sampling sites and the obtained NSF-WQI. Lastly, the Partial Least Squares Path Modelling (PLS-PM) was used to estimate the nexus between LULC, water quality parameters, and the obtained NSF-WQI. The results revealed a poor water quality status at the Mugorore and Butimba sites in the rainy season, then at Mugorore and Bwimiyange sites in the dry season. Furthermore, PCA displayed a sample dispersion based on seasonality while NSF-WQI's CA hierarchy grouped the samples corresponding to LULC types. Finally, the PLS-PM returned a strong positive correlation (+ 0.831) between LULCs and water quality parameters in the rainy season but a negative correlation coefficient (- 0.542) in the dry season, with great influences of cropland on the water quality parameters. Overall, this study concludes that the lake is seasonally influenced by anthropogenic activities, suggesting sustainable land-use management decisions, such as the establishment and safeguarding protection belts in the lake vicinity

    Assessment of three long-term satellite-based precipitation estimates against ground observations for drought characterization in northwestern China

    No full text
    Long-term satellite-based precipitation estimates (LSPE) play a significant role in climatological studies like drought monitoring. In this study, three popular LSPEs (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), Rainfall Estimates from Rain Gauge and Satellite Observations (CHIRPS) and Multi-Source Weighted-Ensemble Precipitation (MSWEP)) were evaluated on a monthly scale using ground-based stations for capturing drought event characteristics over northwestern China from 1983 to 2013. To reflect dry or wet evolution, the Standardized Precipitation Index (SPI) was adopted, and the Run theory was used to identify drought events and their characteristics. The conventional statistical indices (relative bias (RB), correlation coefficient (CC), and root mean square error (RMSE)), as well as categorical indices (probability of detection (POD), false alarm ratio (FAR), and missing ratio (MISS)) are used to evaluate the capability of LSPEs in estimating precipitation and drought characteristics. We found that: (1) three LSPEs showed generally satisfactory performance in estimating precipitation and characterizing drought events. Although LSPEs have acceptable performance in identifying drought events with POD greater than 60%, they still have a high false alarm ratio (>27%) and a high missing ratio (>33%); (2) three LSPEs tended to overestimate drought severity, mainly because of an overestimation of drought duration; (3) the ability of CHIRPS to replicate the temporal evolution of precipitation and SPI values is limited; (4) in severe drought events, PERSIANN-CDR tends to overestimate precipitation, and drought severity, as well as drought area; (5) among the three LSPEs, MSWEP outperformed the other two in identifying drought events (POD > 66%) and characterizing drought features. Finally, we recommend MSWEP for drought monitoring studies due to its high accuracy in estimating drought characteristics over northwestern China. In drought monitoring applications, the overestimation of PERSIANN-CDR for drought peak value and area, as well as CHIRPS's inferiority in capturing drought temporal evolution, must be considered

    Modifications to Snow-Melting and Flooding Processes in the Hydrological Model—A Case Study in Issyk-Kul, Kyrgyzstan

    No full text
    Streamflow impacts water supply and flood protection. Snowmelt floods occur frequently, especially in mountainous areas, and they pose serious threats to natural and socioeconomic systems. The current forecasting method relies on basic snowmelt accumulation and has geographic limitations that restrict the accuracy and timeliness of flood simulation and prediction. In this study, we clarified the precipitation types in two selected catchments by verifying accumulated and maximum temperatures’ influences on snow melting using a separation algorithm of rain and snow that incorporates with the temperatures. The new snow-melting process utilizing the algorithm in the soil and water assessment tool model (SWAT) was also developed by considering the temperatures. The SWAT model was used to simulate flooding and snowmelt in the catchments. We found that the contributions of snowmelt to the river flow were approximately 6% and 7% higher, according to our model compared to the original model, for catchments A and B, respectively. After the model improvement, the flood peaks increased by 49.42% and 43.87% in A and B, respectively. The contributions of snowmelt to stream flow increased by 24.26% and 31% for A and B, respectively. Generally, the modifications improved the model accuracy, the accuracy of snowmelt’s contributions to runoff, the accuracy of predicting flood peaks, the time precision, and the flood frequency simulations

    Modifications to Snow-Melting and Flooding Processes in the Hydrological Model—A Case Study in Issyk-Kul, Kyrgyzstan

    No full text
    Streamflow impacts water supply and flood protection. Snowmelt floods occur frequently, especially in mountainous areas, and they pose serious threats to natural and socioeconomic systems. The current forecasting method relies on basic snowmelt accumulation and has geographic limitations that restrict the accuracy and timeliness of flood simulation and prediction. In this study, we clarified the precipitation types in two selected catchments by verifying accumulated and maximum temperatures’ influences on snow melting using a separation algorithm of rain and snow that incorporates with the temperatures. The new snow-melting process utilizing the algorithm in the soil and water assessment tool model (SWAT) was also developed by considering the temperatures. The SWAT model was used to simulate flooding and snowmelt in the catchments. We found that the contributions of snowmelt to the river flow were approximately 6% and 7% higher, according to our model compared to the original model, for catchments A and B, respectively. After the model improvement, the flood peaks increased by 49.42% and 43.87% in A and B, respectively. The contributions of snowmelt to stream flow increased by 24.26% and 31% for A and B, respectively. Generally, the modifications improved the model accuracy, the accuracy of snowmelt’s contributions to runoff, the accuracy of predicting flood peaks, the time precision, and the flood frequency simulations

    Assessment of Three Long-Term Satellite-Based Precipitation Estimates against Ground Observations for Drought Characterization in Northwestern China

    No full text
    Long-term satellite-based precipitation estimates (LSPE) play a significant role in climatological studies like drought monitoring. In this study, three popular LSPEs (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record (PERSIANN-CDR), Rainfall Estimates from Rain Gauge and Satellite Observations (CHIRPS) and Multi-Source Weighted-Ensemble Precipitation (MSWEP)) were evaluated on a monthly scale using ground-based stations for capturing drought event characteristics over northwestern China from 1983 to 2013. To reflect dry or wet evolution, the Standardized Precipitation Index (SPI) was adopted, and the Run theory was used to identify drought events and their characteristics. The conventional statistical indices (relative bias (RB), correlation coefficient (CC), and root mean square error (RMSE)), as well as categorical indices (probability of detection (POD), false alarm ratio (FAR), and missing ratio (MISS)) are used to evaluate the capability of LSPEs in estimating precipitation and drought characteristics. We found that: (1) three LSPEs showed generally satisfactory performance in estimating precipitation and characterizing drought events. Although LSPEs have acceptable performance in identifying drought events with POD greater than 60%, they still have a high false alarm ratio (>27%) and a high missing ratio (>33%); (2) three LSPEs tended to overestimate drought severity, mainly because of an overestimation of drought duration; (3) the ability of CHIRPS to replicate the temporal evolution of precipitation and SPI values is limited; (4) in severe drought events, PERSIANN-CDR tends to overestimate precipitation, and drought severity, as well as drought area; (5) among the three LSPEs, MSWEP outperformed the other two in identifying drought events (POD > 66%) and characterizing drought features. Finally, we recommend MSWEP for drought monitoring studies due to its high accuracy in estimating drought characteristics over northwestern China. In drought monitoring applications, the overestimation of PERSIANN-CDR for drought peak value and area, as well as CHIRPS’s inferiority in capturing drought temporal evolution, must be considered

    Dynamics of forest net primary productivity based on tree ring reconstruction in the Tianshan Mountains

    No full text
    The lack of long-term high-resolution data makes it difficult to determine historical and future trends in net primary productivity (NPP). This study used tree rings as a proxy to investigate the dynamics of NPP in Tianshan forests where coniferous forests are the major species and the other species are deficient. All trees and some tree cores from five sample plots in different geographic locations in the western Tianshan Mountains were selected to reconstruct forest NPP data from 1950 to 2020. Multiple historical events that resulted in large-scale terrestrial carbon fluxes were identified and the existence of 28a and 17a time-scale cycles of historical forest NPP was observed. We discovered that the reconstructed forest NPP in the western Tianshan Mountains did not significantly correlate with satellite-based products (e.g., MODIS NPP, solar-induced chlorophyll fluorescence data). This result was attributed to the lag of forest growth for climate, the accuracy of the satellite-based products and statistical errors due to the short overlap time. We analysed the uncertainties in reconstructing historical forest NPP using tree ring widths and proposed corresponding solutions. We concluded that the reconstructed data remain the ideal proxy for regions lacking long-term empirical data and exhibit a high degree of confidence for expressing trends in forest productivity change over long time series

    A Spatial and Temporal Assessment of Vegetation Greening and Precipitation Changes for Monitoring Vegetation Dynamics in Climate Zones over Africa

    No full text
    Vegetation is vital, and its greening depends on access to water. Thus, precipitation has a considerable influence on the health and condition of vegetation and its amount and timing depend on the climatic zone. Therefore, it is extremely important to monitor the state of vegetation according to the movements of precipitation in climatic zones. Although a lot of research has been conducted, most of it has not paid much attention to climatic zones in the study of plant health and precipitation. Thus, this paper aims to study the plant health in five African climatic zones. The linear regression model, the persistence index (PI), and the Pearson correlation coefficients were applied for the third generation Normalized Difference Vegetation Index (NDVI3g), with Climate Hazard Group infrared precipitation and Climate Change Initiative Land Cover for 34 years (1982 to 2015). This involves identifying plants in danger of extinction or in dramatic decline and the relationship between vegetation and rainfall by climate zone. The forest type classified as tree cover, broadleaved, deciduous, closed to open (>15%) has been degraded to 74% of its initial total area. The results also revealed that, during the study period, the vegetation of the tropical, polar, and warm temperate zones showed a higher rate of strong improvement. Although arid and boreal zones show a low rate of strong improvement, they are those that experience a low percentage of strong degradation. The continental vegetation is drastically decreasing, especially forests, and in areas with low vegetation, compared to more vegetated areas, there is more emphasis on the conservation of existing plants. The variability in precipitation is excessively hard to tolerate for more types of vegetation

    Assessment and Evaluation of the Response of Vegetation Dynamics to Climate Variability in Africa

    No full text
    Understanding the impacts of climate variability and change on terrestrial ecosystems in Africa remains a critical issue for ecology as well as for regional and global climate policy making. However, acquiring this knowledge can be useful for future predictions towards improved governance for sustainable development. In this study, we analyzed the spatial–temporal characteristics of vegetation greenness, and identified the possible relationships with climatic factors and vulnerable plant species across Africa. Using a set of robust statistical metrics on the Normalized Difference Vegetation Index (NDVI3g) for precipitation and temperature over 34 years from 1982 to 2015, relevant results were obtained. The findings show that, for NDVI, the annual rate of increase (0.013 y−1) was less than that of decrease (−0.014 y−1). In contrast, climate data showed a sharper increase than a marked decrease. Temperature is increasing while rainfall is decreasing, both at a sharp rate in central Africa. In Africa, tree cover, broadleaved, deciduous, closed to open (>15%) and shrubland plant species are critically endangered. The tropical vegetation devastated by the climate variability, causes different plant species to gradually perish; some were cleared out from the areas which experienced degradation, while others were from that of improvement. This study provides valuable information to African governments in order to improve environmental sustainability and development that will lead to the sustainability of natural resources
    corecore