6 research outputs found

    OsOLP1 contributes to drought tolerance in rice by regulating ABA biosynthesis and lignin accumulation

    Get PDF
    Rice, as a major staple crop, employs multiple strategies to enhance drought tolerance and subsequently increase yield. Osmotin-like proteins have been shown to promote plant resistance to biotic and abiotic stress. However, the drought resistance mechanism of osmotin-like proteins in rice remains unclear. This study identified a novel osmotin-like protein, OsOLP1, that conforms to the structure and characteristics of the osmotin family and is induced by drought and NaCl stress. CRISPR/Cas9-mediated gene editing and overexpression lines were used to investigate the impact of OsOLP1 on drought tolerance in rice. Compared to wild-type plants, transgenic rice plants overexpressing OsOLP1 showed high drought tolerance with leaf water content of up to 65%, and a survival rate of 53.1% by regulating 96% stomatal closure and more than 2.5-fold proline content promotion through the accumulation of 1.5-fold endogenous ABA, and enhancing about 50% lignin synthesis. However, OsOLP1 knockout lines showed severely reduced ABA content, decreased lignin deposition, and weakened drought tolerance. In conclusion, the finding confirmed that OsOLP1 drought-stress modulation relies on ABA accumulation, stomatal regulation, proline, and lignin accumulation. These results provide new insights into our perspective on rice drought tolerance

    The nutritional and industrial significance of cottonseeds and genetic techniques in gossypol detoxification

    No full text
    Societal Impact Statement Gossypol and its derivatives represent a class of toxic and immunosuppressive compounds that are naturally synthesized in cottonseed. These compounds pose several health hazards to humans and animals, such as heart and lung damage, breathing difficulties, and death in swine. In poultry, gossypol reduces egg production and slows growth. Studies have also shown that gossypol can indirectly harm humans and animals through the food chain. Although several physical and chemical approaches are adopted to reduce gossypol levels in cottonseed before food and feed processing, these techniques are expensive. Therefore, genetically regulating gossypol production in cotton could provide a cheaper alternative. Summary Cotton (Gossypium spp.), the most important fiber crop, is cultivated in over a hundred countries to provide raw materials for the growing textile industry. The seed obtained after delinting cotton is a rich source of protein with a vast potential for oil and feed production. Cottonseed oil production is estimated at 5.08 million metric tons and is expected to generate over 6.56 billion United States Dollars in revenue by 2029. The cake from defatted cottonseed is used as animal feed and food supplements. However, the contamination of gossypol in cottonseed limits its use. Gossypol ingestion impairs weight gain and causes anorexia, respiratory distress, and death under extreme exposure. This review highlights the significance of cottonseed oil and meal; the pharmacological uses and impact of gossypol; the chemistry, toxicity, and bioactivity of gossypol; and the physical and chemical methods used in gossypol removal during feed and food supplement processing. In addition, the biosynthetic pathway of gossypol and attempts to genetically transform some key regulators of this pathway to produce glandless cottonseed or reduce the gossypol levels in the seed are discussed

    Genome-wide identification, phylogenomics, and expression analysis of benzoxazinoids gene family in rice (Oryza sativa)

    No full text
    Benzoxazinoids (BXs) are potent secondary metabolites that affect plants' biotic and abiotic interactions. Extensive studies on the functions of benzoxazinoids in mediating biotic and abiotic stressors have been reported in maize, wheat, and rye. However, little is known about BXs biosynthesis in rice. This study presents a genome-wide analysis of forty-three Oryzae sativa BXs genes that form diphyletic clusters in a neighbor-joining tree. The first cluster comprised genes that encode the first four steps in BXs biosynthesis (BX2–BX4), leading to the production of 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one (DIBOA). The second cluster mainly comprised BX6 and BX7 genes responsible for BXs glycosylation. Furthermore, BX proteins harboring similar conserved motifs were found to group according to their phylogenetic clustering. Whereas the P450 superfamily protein is conserved in BX1-BX4 proteins, the UDP-glucosyltransferase is conserved in BX7 members. These proteins were found to be strategically localized in subcellular compartments where their catalytic activities are executed. BX1 proteins are localized in the chloroplasts, where they encode the production of indole. BX6 were identified as cytoplasmic proteins, where they are involved in the hydroxylation of DIBOA-Glycoside to 2-(2,4,7-trihydroxy-8-methoxy-1,4-benzoxazine-3-one)-β-d-glucopyranose (TRIBOA-Glycoside). Further investigation of the molecular addresses showed that BX proteins tend to localize together on chromosomes based on their functions. Moreover, the expression profiles of these proteins vary at various developmental stages in rice tissues and organs, highlighting the potential for biotic and abiotic interactions. The prospects of BXs genes in growth induction were also investigated by analyzing their responsiveness to plant hormones and nutrient treatment. BX gene expression is affected by exogenous treatment with auxin and gibberellin as well as nitrogen, potassium, and phosphorus contents, suggesting a possible role in growth mediation. This study lays the foundation for further studies to elucidate the functions of BX genes in rice

    Lignin and Its Pathway-Associated Phytoalexins Modulate Plant Defense against Fungi

    No full text
    Fungi infections cause approximately 60–70% yield loss through diseases such as rice blast, powdery mildew, Fusarium rot, downy mildew, etc. Plants naturally respond to these infections by eliciting an array of protective metabolites to confer physical or chemical protection. Among plant metabolites, lignin, a phenolic compound, thickens the middle lamella and the secondary cell walls of plants to curtail fungi infection. The biosynthesis of monolignols (lignin monomers) is regulated by genes whose transcript abundance significantly improves plant defense against fungi. The catalytic activities of lignin biosynthetic enzymes also contribute to the accumulation of other defense compounds. Recent advances focus on modifying the lignin pathway to enhance plant growth and defense against pathogens. This review presents an overview of monolignol regulatory genes and their contributions to fungi immunity, as reported over the last five years. This review expands the frontiers in lignin pathway engineering to enhance plant defense

    Data_Sheet_2_Hrip1 mediates rice cell wall fortification and phytoalexins elicitation to confer immunity against Magnaporthe oryzae.xlsx

    No full text
    Magnaporthe oryzae is a potent fungus that adversely affects rice yield. Combinatorial techniques of prevention, toxic chemicals, and fungicide are used to remedy rice blast infection. We reported the role of Hrip1 in cell death elicitation and expression of systematic acquired resistance that could potentially stifle M. oryzae infection. In this study, transcriptome and metabolomic techniques were used to investigate the mechanism by which Hrip1 reprogramed the transcriptome of rice seedlings to confer immunity against M. oryzae. Our results showed that Hrip1 induces cell wall thickening and phytoalexin elicitation to confer immunity against M. oryzae infection. Hrip1 activates key lignin biosynthetic genes and myeloblastosis transcription factors that act as molecular switches for lignin production. Lignin content was increased by 68.46% and more after 48 h onwards in Hrip1-treated seedlings compared to the control treatment. Further analysis of cell wall morphology using the transmission electron microscopy technique revealed over 100% cell wall robustness. Hrip1 also induced the expression of 24 diterpene synthases. These include class I and II terpene synthases, cytochrome P450 subfamilies (OsCYP76M and OsCYP71Z), and momilactones synthases. The relationship between the expression of these genes and metabolic elicitation was analyzed using ultra-performance liquid chromatography–tandem mass spectrometry. Enhanced amounts of momilactones A and B, oryzalactone, and phytocassane A and G were detected in the Hrip1-treated leaves. We also identified seven benzoxazinoid genes (BX1-BX7) that could improve rice immunity. Our findings show that Hrip1 confers dual immunity by leveraging lignin and phytoalexins for physical and chemical resistance. This study provides novel insights into the mechanisms underlying Hrip1-treated plant immunity.</p

    Data_Sheet_1_Hrip1 mediates rice cell wall fortification and phytoalexins elicitation to confer immunity against Magnaporthe oryzae.docx

    No full text
    Magnaporthe oryzae is a potent fungus that adversely affects rice yield. Combinatorial techniques of prevention, toxic chemicals, and fungicide are used to remedy rice blast infection. We reported the role of Hrip1 in cell death elicitation and expression of systematic acquired resistance that could potentially stifle M. oryzae infection. In this study, transcriptome and metabolomic techniques were used to investigate the mechanism by which Hrip1 reprogramed the transcriptome of rice seedlings to confer immunity against M. oryzae. Our results showed that Hrip1 induces cell wall thickening and phytoalexin elicitation to confer immunity against M. oryzae infection. Hrip1 activates key lignin biosynthetic genes and myeloblastosis transcription factors that act as molecular switches for lignin production. Lignin content was increased by 68.46% and more after 48 h onwards in Hrip1-treated seedlings compared to the control treatment. Further analysis of cell wall morphology using the transmission electron microscopy technique revealed over 100% cell wall robustness. Hrip1 also induced the expression of 24 diterpene synthases. These include class I and II terpene synthases, cytochrome P450 subfamilies (OsCYP76M and OsCYP71Z), and momilactones synthases. The relationship between the expression of these genes and metabolic elicitation was analyzed using ultra-performance liquid chromatography–tandem mass spectrometry. Enhanced amounts of momilactones A and B, oryzalactone, and phytocassane A and G were detected in the Hrip1-treated leaves. We also identified seven benzoxazinoid genes (BX1-BX7) that could improve rice immunity. Our findings show that Hrip1 confers dual immunity by leveraging lignin and phytoalexins for physical and chemical resistance. This study provides novel insights into the mechanisms underlying Hrip1-treated plant immunity.</p
    corecore