2 research outputs found

    Evidence of New Fluorinated Coordination Compounds in the Composition Space Diagram of FeF<sub>3</sub>/ZnF<sub>2</sub>ā€“H<i>amtetraz</i>-HF<sub>aq</sub> System

    No full text
    The exploration of the composition space diagram of the FeF<sub>3</sub>/ZnF<sub>2</sub>ā€“H<i>amtetraz</i>-HF<sub>aq</sub> system (H<i>amtetraz</i> = 5-aminotetrazole) by solvothermal synthesis at 160 Ā°C for 72 h in dimethylformamide (DMF) has evidenced five new hybrid fluorides (<b>1</b>ā€“<b>5</b>); the structures are characterized from single crystal X-ray diffraction data. [H<i>dma</i>]Ā­Ā·(ZnFe<sup>III</sup>(H<sub>2</sub>O)<sub>4</sub>F<sub>6</sub>) (<b>1</b>) and [H<i>dma</i>]Ā­Ā·[H<i>gua</i>]<sub>2</sub>Ā­Ā·(Fe<sup>III</sup>F<sub>6</sub>) (<b>2</b>) contain anionic inorganic chains (<b>1</b>) or isolated octahedra (<b>2</b>) weakly hydrogen bonded (Class I hybrids) to dimethylammonium (H<i>dma</i>) and/or guanidinium (H<i>gua</i>) cations which are produced from the tetrazole ligand and solvent decomposition. [H<i>dma</i>]<sub>2</sub>Ā­Ā·[H<i>gua</i>]Ā­Ā·[NH<sub>4</sub>]Ā­Ā·[ZnFe<sup>III</sup>F<sub>5</sub>(<i>amtetraz</i>)<sub>2</sub>]<sub>2</sub> (<b>3</b>), [H<i>dma</i>]<sub>2</sub>Ā­Ā·[Zn<sub>1.6</sub>Fe<sup>II</sup><sub>0.4</sub>Fe<sup>III</sup>F<sub>6</sub>Ā­(<i>amtetraz</i>)<sub>3</sub>] (<b>4</b>), and [H<i>dma</i>]Ā­Ā·[Zn<sub>4</sub>F<sub>5</sub>(<i>amtetraz</i>)<sub>4</sub>] (<b>5</b>) are considered as Class II hybrids in which the (<i>amtetraz</i>)<sup>āˆ’</sup> anions are strongly linked to divalent metal cations via Nā€“M bonds. In <b>3</b>, <sub>āˆž</sub>{[NH<sub>4</sub>]Ā­Ā·[ZnFe<sup>III</sup>F<sub>5</sub>Ā­(<i>amtetraz</i>)<sub>2</sub>]<sub>2</sub>} layers are separated by [H<i>dma</i>]<sup>+</sup> and [H<i>gua</i>]<sup>+</sup> cations. <b>4</b> and <b>5</b> exhibit three-dimensional (3D) hybrid networks that contain small cavities where [H<i>dma</i>]<sup>+</sup> cations are inserted. A porous 3D metalā€“organic framework intermediate is evidenced from the thermogravimetric analysis and X-ray thermodiffraction of <b>5</b>

    Exploring the Sm<sub>1ā€“<i>x</i></sub>Ca<sub><i>x</i></sub>F<sub>3ā€“<i>x</i></sub> Tysonite Solid Solution as a Solid-State Electrolyte: Relationships between Structural Features and F<sup>ā€“</sup> Ionic Conductivity

    No full text
    Pure tysonite Sm<sub>1ā€“<i>x</i></sub>Ca<sub><i>x</i></sub>F<sub>3ā€“<i>x</i></sub> solid solutions for 0.05 ā‰¤ <i>x</i> ā‰¤ 0.17 have been prepared by the solid-state route. For the first time, the partial Sm<sub>1ā€“<i>x</i></sub>Ca<sub><i>x</i></sub>F<sub>3ā€“<i>x</i></sub> solid solution is investigated on the basis of structural features and ionic conductivity measurements. Powder X-ray diffraction Rietveld refinements show an unexpected decrease of the hexagonal unit cell volume related to the creation of fluorine vacancies. The local environment of F1, which is mainly responsible for the ionic conductivity, changes with the Ca content: the distortion of the F1Ā­(Sm,Ca)<sub>4</sub> tetrahedral site decreases with the Ca content. Fluoride ion exchanges have been qualitatively probed on two Sm<sub>1ā€“<i>x</i></sub>Ca<sub><i>x</i></sub>F<sub>3ā€“<i>x</i></sub> (<i>x</i> = 0.05 and <i>x</i> = 0.15) samples thanks to <sup>19</sup>F magic angle spinning NMR experiments at various spinning frequencies and temperatures. At room temperature, the ionic conductivity decreases exponentially with the Ca content and the activation energy increases monotonously with the Ca content. The highest conductivity is found for the lowest Ca content or the smallest fluorine vacancy content stabilized in the Sm<sub>1ā€“<i>x</i></sub>Ca<sub><i>x</i></sub>F<sub>3ā€“<i>x</i></sub> tysonite network corresponding to Sm<sub>0.95</sub>Ca<sub>0.05</sub>F<sub>2.95</sub> (10<sup>ā€“4</sup> SĀ·cm<sup>ā€“1</sup>, <i>E</i><sub>a</sub> = 0.36 eV at room temperature). For this composition, the largest dispersions of F2ā€“(Sm,Ca) and F3ā€“(Sm,Ca) distances as well as (Sm,Ca)ā€“F1ā€“(Sm,Ca) angles are observed. The buckling of F2/F3 sheets around the <i>z</i> = 1/4 coordinate for low Ca content affects the large F1 tetrahedral site with the strongest distortion. The higher the buckling effect into the F2/F3 sheets, the higher the F1 local site distortion and the higher the ionic mobility and conductivity
    corecore