619 research outputs found
Biomimetic spatial and temporal (4D) design and fabrication
We imagine the built environment of the future as a ‘bio-hybrid machine for living in’ that will sense and react to activities within the space in order to provide experiences and services that will elevate quality of life while coexisting seamlessly with humans and the natural environment. The study of Hierarchical design in biological materials has the potential to alter the way designers/ engineers/ crafts-men of the future engage with materials in order to realise such visions. We are ex-ploring this design approach using digital manufacturing technologies such as jac-quard weaving and 3D printing
The Mixmaster Spacetime, Geroch's Transformation and Constants of Motion
We show that for -symmetric spacetimes on a constant of
motion associated with the well known Geroch transformation, a functional
, quadratic in gravitational momenta, is strictly positive
in an open subset of the set of all -symmetric initial data, and
therefore not weakly zero. The Mixmaster initial data appear to be on the
boundary of that set. We calculate the constant of motion perturbatively for
the Mixmaster spacetime and find it to be proportional to the minisuperspace
Hamiltonian to the first order in the Misner anisotropy variables, i.e. weakly
zero. Assuming that is exactly zero for the Mixmaster spacetime, we show
that Geroch's transformation, when applied to the Mixmaster spacetime, gives a
new \mbox{-symmetric} solution of the vacuum Einstein equations, globally
defined on \mbox{},which is non-homogeneous and
presumably exhibits Mixmaster-like complicated dynamical behavior.Comment: 25 pages, preprint YCTP-20-93, Revte
Alkaline phosphatase for treatment of sepsis-induced acute kidney injury: a prospective randomized double-blind placebo-controlled trial
Introduction: To evaluate whether alkaline phosphatase (AP) treatment improves renal function in sepsis-induced acute kidney injury (AKI), a prospective, double-blind, randomized, placebo-controlled study in critically ill patients with severe sepsis or septic shock with evidence of AKI was performed.Methods: Thirty-six adult patients with severe sepsis or septic shock according to Systemic Inflammatory Response Syndrome criteria and renal injury defined according to the AKI Network criteria were included. Dialysis intervention was standardized according to Acute Dialysis Quality Initiative consensus. Intravenous infusion of alkaline phosphatase (bolus injection of 67.5 U/kg body weight followed by continuous infusion of 132.5 U/kg/24 h for 48 hours, or placebo) starting within 48 hours of AKI onset and followed up to 28 days post-treatment. The primary outcome variable was progress in renal function variables (endogenous creatinine clearance, requirement and duration of renal replacement therapy, RRT) after 28 days. The secondary outcome variables included changes in circulating inflammatory mediators, urinary excretion of biomarkers of tubular injury, and safety.Results: There was a significant (P = 0.02) difference in favor of AP treatment relative to controls for the primary outcome variable. Individual renal parameters showed that endogenous creatinine clearance (baseline to Day 28) was significantly higher in the treated group relative to placebo (from 50 ± 27 to 108 ± 73 mL/minute (mean ± SEM) for the AP group; and from 40 ± 37 to 65 ± 30 mL/minute for placebo; P = 0.01). Reductions in RRT requirement and duration did not reach significance. The results in renal parameters were supported by significantly more pronounced reductions in the systemic markers C-reactive protein, Interleukin-6, LPS-binding protein and in the urinary excretion of Kidney Injury Molecule-1 and Interleukin-18 in AP-treated patients relative to placebo. The Drug Safety Monitoring Board did not raise any issues throughout the trial.Conclusions: The improvements in renal function suggest alkaline phosphatase is a promising new treatment for patients with severe sepsis or septic shock with AKI.Trial Registration: www.clinicaltrials.gov: NCTNCT00511186. © 2012 Pickkers et al.; licensee BioMed Central Ltd
High CD33-antigen loads in peripheral blood limit the efficacy of gemtuzumab ozogamicin |(Mylotarg®) treatment in acute myeloid leukemia patients
Gemtuzumab ozogamicin (Mylotarg®) induces remission in approximately 30% of relapsed AML patients. We previously demonstrated that gemtuzumab infusion results in near-complete CD33 saturation in peripheral blood, and that saturating gemtuzumab levels result in continuous binding and internalization of gemtuzumab due to renewed CD33 expression. We now demonstrate that a high CD33-antigen load in peripheral blood is an independent adverse prognostic factor, likely due to peripheral consumption of gemtuzumab. Indeed, CD33 saturation in bone marrow is significantly reduced (40-90% saturation) as compared with CD33 saturation in corresponding peripheral blood samples (>90%). In vitro, such reduced CD33 saturation levels were strongly related with reduced cell kill. Apparently, high CD33-antigen loads in blood consume gemtuzumab and thereby limit its penetration into bone marrow. Consequently, CD33 saturation in bone marrow is reduced, which hampers efficient cell kill. Therefore, gemtuzumab should be administered at higher or repeated doses, or, preferably, after reduction of the leukemic cell burden by classical chemotherapy
Defining type 2 diabetes polygenic risk scores through colocalization and network-based clustering of metabolic trait genetic associations
Background: Type 2 diabetes (T2D) is a heterogeneous and polygenic disease. Previous studies have leveraged the highly polygenic and pleiotropic nature of T2D variants to partition the heterogeneity of T2D, in order to stratify patient risk and gain mechanistic insight. We expanded on these approaches by performing colocalization across GWAS traits while assessing the causality and directionality of genetic associations. Methods: We applied colocalization between T2D and 20 related metabolic traits, across 243 loci, to obtain inferences of shared casual variants. Network-based unsupervised hierarchical clustering was performed on variant-trait associations. Partitioned polygenic risk scores (PRSs) were generated for each cluster using T2D summary statistics and validated in 21,742 individuals with T2D from 3 cohorts. Inferences of directionality and causality were obtained by applying Mendelian randomization Steiger’s Z-test and further validated in a pediatric cohort without diabetes (aged 9–12 years old, n = 3866). Results: We identified 146 T2D loci that colocalized with at least one metabolic trait locus. T2D variants within these loci were grouped into 5 clusters. The clusters corresponded to the following pathways: obesity, lipodystrophic insulin resistance, liver and lipid metabolism, hepatic glucose metabolism, and beta-cell dysfunction. We observed heterogeneity in associations between PRSs and metabolic measures across clusters. For instance, the lipodystrophic insulin resistance (Beta − 0.08 SD, 95% CI [− 0.10–0.07], p = 6.50 × 10−32) and beta-cell dysfunction (Beta − 0.10 SD, 95% CI [− 0.12, − 0.08], p = 1.46 × 10−47) PRSs were associated to lower BMI. Mendelian randomization Steiger analysis indicated that increased T2D risk in these pathways was causally associated to lower BMI. However, the obesity PRS was conversely associated with increased BMI (Beta 0.08 SD, 95% CI 0.06–0.10, p = 8.0 × 10−33). Analyses within a pediatric cohort supported this finding. Additionally, the lipodystrophic insulin resistance PRS was associated with a higher odds of chronic kidney disease (OR 1.29, 95% CI 1.02–1.62, p = 0.03). Conclusions: We successfully partitioned T2D genetic variants into phenotypic pathways using a colocalization first approach. Partitioned PRSs were associated to unique metabolic and clinical outcomes indicating successful partitioning of disease heterogeneity. Our work expands on previous approaches by providing stronger inferences of shared causal variants, causality, and directionality of GWAS variant-trait associations.</p
Defining type 2 diabetes polygenic risk scores through colocalization and network-based clustering of metabolic trait genetic associations
Background: Type 2 diabetes (T2D) is a heterogeneous and polygenic disease. Previous studies have leveraged the highly polygenic and pleiotropic nature of T2D variants to partition the heterogeneity of T2D, in order to stratify patient risk and gain mechanistic insight. We expanded on these approaches by performing colocalization across GWAS traits while assessing the causality and directionality of genetic associations. Methods: We applied colocalization between T2D and 20 related metabolic traits, across 243 loci, to obtain inferences of shared casual variants. Network-based unsupervised hierarchical clustering was performed on variant-trait associations. Partitioned polygenic risk scores (PRSs) were generated for each cluster using T2D summary statistics and validated in 21,742 individuals with T2D from 3 cohorts. Inferences of directionality and causality were obtained by applying Mendelian randomization Steiger’s Z-test and further validated in a pediatric cohort without diabetes (aged 9–12 years old, n = 3866). Results: We identified 146 T2D loci that colocalized with at least one metabolic trait locus. T2D variants within these loci were grouped into 5 clusters. The clusters corresponded to the following pathways: obesity, lipodystrophic insulin resistance, liver and lipid metabolism, hepatic glucose metabolism, and beta-cell dysfunction. We observed heterogeneity in associations between PRSs and metabolic measures across clusters. For instance, the lipodystrophic insulin resistance (Beta − 0.08 SD, 95% CI [− 0.10–0.07], p = 6.50 × 10−32) and beta-cell dysfunction (Beta − 0.10 SD, 95% CI [− 0.12, − 0.08], p = 1.46 × 10−47) PRSs were associated to lower BMI. Mendelian randomization Steiger analysis indicated that increased T2D risk in these pathways was causally associated to lower BMI. However, the obesity PRS was conversely associated with increased BMI (Beta 0.08 SD, 95% CI 0.06–0.10, p = 8.0 × 10−33). Analyses within a pediatric cohort supported this finding. Additionally, the lipodystrophic insulin resistance PRS was associated with a higher odds of chronic kidney disease (OR 1.29, 95% CI 1.02–1.62, p = 0.03). Conclusions: We successfully partitioned T2D genetic variants into phenotypic pathways using a colocalization first approach. Partitioned PRSs were associated to unique metabolic and clinical outcomes indicating successful partitioning of disease heterogeneity. Our work expands on previous approaches by providing stronger inferences of shared causal variants, causality, and directionality of GWAS variant-trait associations.</p
Functional Ultrasound (fUS) During Awake Brain Surgery: The Clinical Potential of Intra-Operative Functional and Vascular Brain Mapping
Background and Purpose: Oncological neurosurgery relies heavily on making continuous, intra-operative tumor-brain delineations based on image-guidance. Limitations of currently available imaging techniques call for the development of real-time image-guided resection tools, which allow for reliable functional and anatomical information in an intra-operative setting. Functional ultrasound (fUS), is a new mobile neuro-imaging tool with unprecedented spatiotemporal resolution, which allows for the detection of small changes in blood dynamics that reflect changes in metabolic activity of activated neurons through neurovascular coupling. We have applied fUS during conventional awake brain surgery to determine its clinical potential for both intra-operative functional and vascular brain mapping, with the ultimate aim of achieving maximum safe tumor resection. Methods: During awake brain surgery, fUS was used to image tumor vasculature and task-evoked brain activation with electrocortical stimulation mapping (ESM) as a gold standard. For functional imaging, patients were presented with motor, language or visual tasks, while the probe was placed over (ESM-defined) functional brain areas. For tumor vascular imaging, tumor tissue (pre-resection) and tumor resection cavity (post-resection) were imaged by moving the hand-held probe along a continuous trajectory over the regions of interest. Results: A total of 10 patients were included, with predominantly intra-parenchymal frontal and temporal lobe tumors of both low and higher histopathological grades. fUS was able to detect (ESM-defined) functional areas deep inside the brain for a range of functional tasks including language processing. Brain tissue could be imaged at a spatial and temporal resolution of 300 μm and 1.5–2.0 ms respectively, revealing real-time tumor-specific, and healthy vascular characteristics. Conclusion: The current study presents the potential of applying fUS during awake brain surgery. We i
Neoadjuvant pazopanib and molecular analysis of tissue response in renal cell carcinoma
BACKGROUND. Surgery remains the frontline therapy for patients with localized clear cell renal cell carcinoma (ccRCC); however, 20%–40% recur. Angiogenesis inhibitors have improved survival in metastatic patients and may result in responses in the neoadjuvant setting. The impact of these agents on the tumor genetic heterogeneity or the immune milieu is largely unknown. This phase II study was designed to evaluate safety, response, and effect on tumor tissue of neoadjuvant pazopanib. METHODS. ccRCC patients with localized disease received pazopanib (800 mg daily; median 8 weeks), followed by nephrectomy. Five tumors were examined for mutations by whole exome sequencing from samples collected before therapy and at nephrectomy. These samples underwent RNA sequencing; 17 samples were available for posttreatment assessment. RESULTS. Twenty-one patients were enrolled. The overall response rate was 8 of 21 (38%). No patients with progressive disease. At 1-year, response-free survival and overall survival was 83% and 89%, respectively. The most frequent grade 3 toxicity was hypertension (33%, 7 of 21). Sequencing revealed strong concordance between pre- and posttreatment samples within individual tumors, suggesting tumors harbor stable core profiles. However, a reduction in private mutations followed treatment, suggesting a selective process favoring enrichment of driver mutations. CONCLUSION. Neoadjuvant pazopanib is safe and active in ccRCC. Future genomic analyses may enable the segregation of driver and passenger mutations. Furthermore, tumor infiltrating immune cells persist during therapy, suggesting that pazopanib can be combined with immune checkpoint inhibitors without dampening the immune response. FUNDING. Support was provided by Novartis and GlaxoSmithKline as part of an investigator-initiated study
- …