15 research outputs found

    A Very Sensitive 21cm Survey for Galactic High-Velocity HI

    Get PDF
    Very sensitive HI 21cm observations have been made in 860 directions at dec >= -43deg in search of weak, Galactic, high-velocity HI emission lines at moderate and high Galactic latitudes. One-third of the observations were made toward extragalactic objects. The median 4-sigma detection level is NHI = 8x10^{17} cm^-2 over the 21' telescope beam. High-velocity HI emission is detected in 37% of the directions; about half of the lines could not have been seen in previous surveys. The median FWHM of detected lines is 30.3 km/s. High- velocity HI lines are seen down to the sensitivity limit of the survey implying that there are likely lines at still lower values of NHI. The weakest lines have a kinematics and distribution on the sky similar to that of the strong lines, and thus do not appear to be a new population. Most of the emission originates from objects which are extended over several degrees; few appear to be compact sources. At least 75%, and possibly as many as 90%, of the lines are associated with one of the major high-velocity complexes. The Magellanic Stream extends at least 10 deg to higher Galactic latitude than previously thought and is more extended in longitude as well. Although there are many lines with low column density, their numbers do not increase as rapidly as NHI^-1, so most of the HI mass in the high-velocity cloud phenomenon likely resides in the more prominent clouds. The bright HI features may be mere clumps within larger structures, and not independent objects.Comment: 88 pages includes 22 figures Accepted for Publication in ApJ Suppl. June 200

    Predicting the exposure of diving grey seals to shipping noise.

    Get PDF
    There is high spatial overlap between grey seals and shipping traffic, and the functional hearing range of grey seals indicates sensitivity to underwater noise emitted by ships. However, there is still very little data regarding the exposure of grey seals to shipping noise, constraining effective policy decisions. Particularly, there are few predictions that consider the at-sea movement of seals. Consequently, this study aimed to predict the exposure of adult grey seals and pups to shipping noise along a three-dimensional movement track, and assess the influence of shipping characteristics on sound exposure levels. Using ship location data, a ship source model, and the acoustic propagation model, RAMSurf, this study estimated weighted 24-h sound exposure levels (10-1000 Hz) (SELw). Median predicted 24-h SELw was 128 and 142 dB re 1 μPa2s for the pups and adults, respectively. The predicted exposure of seals to shipping noise did not exceed best evidence thresholds for temporary threshold shift. Exposure was mediated by the number of ships, ship source level, the distance between seals and ships, and the at-sea behaviour of the seals. The results can inform regulatory planning related to anthropogenic pressures on seal populations

    Analogue photonic link design charts for microwave engineering applications

    No full text
    A set of unique design charts for intensity-modulation direct-detection microwave photonics links is presented. The charts facilitate link design and analysis, clearly demonstrating performance trade-offs in terms of standard microwave performance metrics

    Clicking in Shallow Rivers : Short-Range Echolocation of Irrawaddy and Ganges River Dolphins in a Shallow, Acoustically Complex Habitat

    Get PDF
    Toothed whales (Cetacea, odontoceti) use biosonar to navigate their environment and to find and catch prey. All studied toothed whale species have evolved highly directional, high-amplitude ultrasonic clicks suited for long-range echolocation of prey in open water. Little is known about the biosonar signals of toothed whale species inhabiting freshwater habitats such as endangered river dolphins. To address the evolutionary pressures shaping the echolocation signal parameters of non-marine toothed whales, we investigated the biosonar source parameters of Ganges river dolphins (Platanista gangetica gangetica) and Irrawaddy dolphins (Orcaella brevirostris) within the river systems of the Sundarban mangrove forest. Both Ganges and Irrawaddy dolphins produced echolocation clicks with a high repetition rate and low source level compared to marine species. Irrawaddy dolphins, inhabiting coastal and riverine habitats, produced a mean source level of 195 dB (max 203 dB) re 1 µPapp whereas Ganges river dolphins, living exclusively upriver, produced a mean source level of 184 dB (max 191) re 1 µPapp. These source levels are 1–2 orders of magnitude lower than those of similar sized marine delphinids and may reflect an adaptation to a shallow, acoustically complex freshwater habitat with high reverberation and acoustic clutter. The centroid frequency of Ganges river dolphin clicks are an octave lower than predicted from scaling, but with an estimated beamwidth comparable to that of porpoises. The unique bony maxillary crests found in the Platanista forehead may help achieve a higher directionality than expected using clicks nearly an octave lower than similar sized odontocetes.Publisher PDFPeer reviewe
    corecore