1,351 research outputs found

    Cyberhate and Human Rights

    Full text link
    This is a submission to the Australian Human Rights Commission’s “Human Rights and Technology” Issues Paper, which I co-authored with my colleague, Dr Emma A. Jane (UNSW, sydney). It concerns the topic of cyberhate, and in particular, it discusses the ways in which emerging technologies combined with various PESTLE factors are leading to the compromise of many people’s human rights. We also make a number of recommendations. Our submission (see link) is subsequently cited to back up substantive claims on seven occasions in the AHRC’s December 2019 Discussion Paper available at: https://tech.humanrights.gov.au/consultatio

    How cognitive enhancement can change our duties

    Get PDF
    This theoretical paper draws the scientific community's attention to how pharmacological cognitive enhancement may impact on society and law. Namely, if safe, reliable, and effective techniques to enhance mental performance are eventually developed, then this may under some circumstances impose new duties onto people in high-responsibility professions-e.g., surgeons or pilots-to use such substances to minimize risks of adverse outcomes or to increase the likelihood of good outcomes. By discussing this topic, we also hope to encourage scientists to bring their expertise to bear on this current public debate. © 2014 Santoni de Sio, Faulmüller and Vincent

    Quaternary structure of Artemia haemoglobin II: analysis of T and C polymer alignment and interpolymer interface

    Get PDF
    BACKGROUND: The brine shrimp Artemia expresses four different types of haemoglobin subunits namely C1, C2, T1 and T2. Two of these four subunits dimerize in different combinations to produce the three isoforms of the heterodimeric Artemia haemoglobin: HbI (C1 and C2), HbII (C1 and T2) and HbIII (T1 and T2). Previous biochemical, biophysical and computational analyses demonstrate that the T and C polymers are rings of nine concatenated globin domains, which are covalently joined by interdomain linkers. Two such rings stacked coaxially give the functional molecule. This research aimed to construct a quaternary structural model of Artemia HbII that shows the interpolymer interface and domain-domain alignment, using the MS3D (mass spectrometry for three dimensional analysis) approach. This involved introducing chemical crosslinks between the two polymers, cleaving with trypsin and analyzing the resulting products by mass spectrometry. This was followed by computational analysis of the mass spectrometry data using the program SearchXlinks to identify putatively crosslinked peptides. RESULTS: Six putative EGS (ethylene glycol bis [succinimidylsuccinate]) crosslinked tryptic peptides were identified. All of them support a model in which the EF helices of all domains are in contact along the interpolymer surface, and Domain 1 of the T-polymer aligns with Domain 1 of the C-polymer. Any two adjacent interpolymer domain pairs contact through the early Helix H and early Helix A. The orientation of domains is different from the subunit proposed model proposed previously by this group. Crosslinking with GMBS (N- [γ-maleimidobutyryloxy]succinimide ester) was also performed, and the results show good agreement with this model. CONCLUSION: The interpolymer EF-contact allows the hydrophobic E and F helices to be buried in the interface and therefore allow the complex to solubilize readily to facilitate efficient oxygen transport. Furthermore the EF-contact is a common contact in cooperative haemoglobins and thus the model is consistent with the cooperative behaviour of Artemia HbII

    Social Work, Politics, and Social Policy Education: Applying a Multidimensional Framework of Power

    Get PDF
    The call to promote social justice sets the social work profession in a political context. In an effort to enhance social workers’ preparedness to engage in political advocacy, this article calls on educators to integrate a broad theoretical understanding of power into social policy curricula. We suggest the use of a multidimensional conceptualization of power that emphasizes mechanisms of decision making, agenda control, and attitude formation. We then apply these mechanisms to demonstrate how two prominent features of contemporary politics—party polarization and racially biased attitudes—affect the ability of social workers to influence policy. Finally, we suggest content that social work educators can integrate to prepare future social workers to engage in strategic and effective social justice advocacy

    Patient safety in developing countries: retrospective estimation of scale and nature of harm to patients in hospital

    Get PDF
    OBJECTIVE: To assess the frequency and nature of adverse events to patients in selected hospitals in developing or transitional economies. DESIGN: Retrospective medical record review of hospital admissions during 2005 in eight countries. SETTING: Ministries of Health of Egypt, Jordan, Kenya, Morocco, Tunisia, Sudan, South Africa and Yemen; the World Health Organisation (WHO) Eastern Mediterranean and African Regions (EMRO and AFRO), and WHO Patient Safety. PARTICIPANTS: Convenience sample of 26 hospitals from which 15,548 patient records were randomly sampled. MAIN OUTCOME MEASURES: Two stage screening. Initial screening based on 18 explicit criteria. Records that screened positive were then reviewed by a senior physician for determination of adverse event, its preventability, and the resulting disability. RESULTS: Of the 15,548 records reviewed, 8.2% showed at least one adverse event, with a range of 2.5% to 18.4% per country. Of these events, 83% were judged to be preventable, while about 30% were associated with death of the patient. About 34% adverse events were from therapeutic errors in relatively non-complex clinical situations. Inadequate training and supervision of clinical staff or the failure to follow policies or protocols contributed to most events. CONCLUSIONS: Unsafe patient care represents a serious and considerable danger to patients in the hospitals that were studied, and hence should be a high priority public health problem. Many other developing and transitional economies will probably share similar rates of harm and similar contributory factors. The convenience sampling of hospitals might limit the interpretation of results, but the identified adverse event rates show an estimate that should stimulate and facilitate the urgent institution of appropriate remedial action and also to trigger more research. Prevention of these adverse events will be complex and involves improving basic clinical processes and does not simply depend on the provision of more resources

    Formation of octapod MnO nanoparticles with enhanced magnetic properties through kinetically-controlled thermal decomposition of polynuclear manganese complexes

    Get PDF
    Polynuclear manganese complexes are used as precursors for the synthesis of manganese oxide nanoparticles (MnO NPs). Altering the thermal decomposition conditions can shift the nanoparticle product from spherical, thermodynamically-driven NPs to unusual, kinetically-controlled octapod structures. The resulting increased surface area profoundly alters the NP's surface-dependent magnetism and may have applications in nanomedicine

    Streptococcus Pneumoniae Secretes Hydrogen Peroxide Leading to DNA Damage and Apoptosis in Lung Cells

    Get PDF
    Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of H[subscript 2]O[subscript 2], plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes H[subscript 2]O[subscript 2], greatly suppresses S. pneumoniae-induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and H[subscript 2]O[subscript 2] production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae-induced genotoxicity. Taken together, this study shows that S. pneumoniae-induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia

    A ferroelectric memristor

    Full text link
    Memristors are continuously tunable resistors that emulate synapses. Conceptualized in the 1970s, they traditionally operate by voltage-induced displacements of matter, but the mechanism remains controversial. Purely electronic memristors have recently emerged based on well-established physical phenomena with albeit modest resistance changes. Here we demonstrate that voltage-controlled domain configurations in ferroelectric tunnel barriers yield memristive behaviour with resistance variations exceeding two orders of magnitude and a 10 ns operation speed. Using models of ferroelectric-domain nucleation and growth we explain the quasi-continuous resistance variations and derive a simple analytical expression for the memristive effect. Our results suggest new opportunities for ferroelectrics as the hardware basis of future neuromorphic computational architectures

    The role of nutrient loading and eutrophication in estuarine ecology.

    Get PDF
    Eutrophication is a process that can be defined as an increase in the rate of supply of organic matter (OM) to an ecosystem. We provide a general overview of the major features driving estuarine eutrophication and outline some of the consequences of that process. The main chemical constituent of OM is carbon (C), and therefore rates of eutrophication are expressed in units of C per area per unit time. OM occurs in both particulate and dissolved forms. Allochthonous OM originates outside the estuary, whereas autochthonous OM is generated within the system, mostly by primary producers or by benthic regeneration of OM. The supply rates of limiting nutrients regulate phytoplankton productivity that contributes to inputs of autochthonous OM. The trophic status of an estuary is often based on eutrophication rates and can be categorized as oligotrophic (<100 g C m(-2) y(-1), mesotrophic (100-300 g C m(-2) y(-1), eutrophic (300-500 g C m(-2) y(-1), or hypertrophic (>500 g C m(-2) y(-1). Ecosystem responses to eutrophication depend on both export rates (flushing, microbially mediated losses through respiration, and denitrification) and recycling/regeneration rates within the estuary. The mitigation of the effects of eutrophication involves the regulation of inorganic nutrient (primarily N and P) inputs into receiving waters. Appropriately scaled and parameterized nutrient and hydrologic controls are the only realistic options for controlling phytoplankton blooms, algal toxicity, and other symptoms of eutrophication in estuarine ecosystems
    corecore