2 research outputs found

    Trade-offs in Computer-aided Biomimetics

    Get PDF
    Biomimetics, the application of mechanisms observed in nature to inform technical solutions, is inherently cross-disciplinary. For the most part, however, practitioners are only expert in one domain, e.g., engineering. Being a layman in the other domain, biology, can make it hard and time-consuming to find and understand relevant information. Computer-Aided Biomimetics (CAB) involves the development of computational tools to overcome this domain-expertise mismatch. Finding a bridge between engineering and biology has been challenging. Although a plethora of methodological approaches have been proposed to bridge the engineering and biology domains, Biomimetics remains adventitious and research intensive. We give an overview of previous research efforts in CAB and motivate our approach that revolves around the resolution of biological trade-offs. This is a unique approach, as previous work has always aimed to extract engineering functions from biological texts. We describe our novel CAB system that extracts trade-offs, a within-domain concept to indicate a dialectical relation between two or more biological traits. We provide a description of our dataset for the extraction of trade-offs from biology research papers, as well as our state-of-the-art Relation Extraction system. The dataset consists of over 1.5k sentences taken from biology research papers, describing a trade-off or similar high-level relation between two or more concepts. Furthermore, we provide an in-depth analysis of the information extracted by our CAB system from a corpus of 10k biology research papers. We show in a qualitative analysis that our system extracts key concepts and relations from biology research papers that are relevant to Biomimetics. Unique to our approach is that our system makes it feasible to collect a comprehensive list of the system parameters and solution principles used in biology. This enables statistical analysis, such as finding the distribution of fundamental principles among the resolution of various trade-offs. Notably, the solutions to trade-offs differ little over various hierarchical levels of biology. This makes our finding relevant to any research that aims to find desired, but underutilized, properties observed in nature

    Biomimetics: its practice and theory

    No full text
    Biomimetics, a name coined by Otto Schmitt in the 1950s for the transfer of ideas and analogues from biology to technology, has produced some significant and successful devices and concepts in the past 50 years, but is still empirical. We show that TRIZ, the Russian system of problem solving, can be adapted to illuminate and manipulate this process of transfer. Analysis using TRIZ shows that there is only 12% similarity between biology and technology in the principles which solutions to problems illustrate, and while technology solves problems largely by manipulating usage of energy, biology uses information and structure, two factors largely ignored by technology
    corecore