755 research outputs found

    Human Cytomegalovirus pTRS1 and pIRS1 Antagonize Protein Kinase R To Facilitate Virus Replication

    Get PDF
    ABSTRACT Human cytomegalovirus (HCMV) counteracts host defenses that otherwise act to limit viral protein synthesis. One such defense is the antiviral kinase protein kinase R (PKR), which inactivates the eukaryotic initiation factor 2 (eIF2) translation initiation factor upon binding to viral double-stranded RNAs. Previously, the viral TRS1 and IRS1 proteins were found to antagonize the antiviral kinase PKR outside the context of HCMV infection, and the expression of either pTRS1 or pIRS1 was shown to be necessary for HCMV replication. In this study, we found that expression of either pTRS1 or pIRS1 is necessary to prevent PKR activation during HCMV infection and that antagonism of PKR is critical for efficient viral replication. Consistent with a previous study, we observed decreased overall levels of protein synthesis, reduced viral protein expression, and diminished virus replication in the absence of both pTRS1 and pIRS1. In addition, both PKR and eIF2α were phosphorylated during infection when pTRS1 and pIRS1 were absent. We also found that expression of pTRS1 was both necessary and sufficient to prevent stress granule formation in response to eIF2α phosphorylation. Depletion of PKR prevented eIF2α phosphorylation, rescued HCMV replication and protein synthesis, and reversed the accumulation of stress granules in infected cells. Infection with an HCMV mutant lacking the pTRS1 PKR binding domain resulted in PKR activation, suggesting that pTRS1 inhibits PKR through a direct interaction. Together our results show that antagonism of PKR by HCMV pTRS1 and pIRS1 is critical for viral protein expression and efficient HCMV replication. IMPORTANCE To successfully replicate, viruses must counteract host defenses that limit viral protein synthesis. We have identified inhibition of the antiviral kinase PKR by the viral proteins TRS1 and IRS1 and shown that this is a critical step in HCMV replication. Our results suggest that inhibiting pTRS1 and pIRS1 function or restoring PKR activity during infection may be a successful strategy to limit HCMV disease

    Mechanism of Protein Kinase R Inhibition by Human Cytomegalovirus pTRS1

    Get PDF
    ABSTRACT Double-stranded RNAs (dsRNA) produced during human cytomegalovirus (HCMV) infection activate the antiviral kinase protein kinase R (PKR), which potently inhibits virus replication. The HCMV pTRS1 and pIRS1 proteins antagonize PKR to promote HCMV protein synthesis and replication; however, the mechanism by which pTRS1 inhibits PKR is unclear. PKR activation occurs in a three-step cascade. First, binding to dsRNA triggers PKR homodimerizaton. PKR dimers then autophosphorylate, leading to a conformational shift that exposes the binding site for the PKR substrate eIF2α. Consistent with previous in vitro studies, we found that pTRS1 bound and inhibited PKR. pTRS1 binding to PKR was not mediated by an RNA intermediate, and mutations in the pTRS1 RNA binding domain did not affect PKR binding or inhibition. Rather, mutations that disrupted the pTRS1 interaction with PKR ablated the ability of pTRS1 to antagonize PKR activation by dsRNA. pTRS1 did not block PKR dimerization and could bind and inhibit a constitutively dimerized PKR kinase domain. In addition, pTRS1 binding to PKR inhibited PKR kinase activity. Single amino acid point mutations in the conserved eIF2α binding domain of PKR disrupted pTRS1 binding and rendered PKR resistant to inhibition by pTRS1. Consistent with a critical role for the conserved eIF2α contact site in PKR binding, pTRS1 bound an additional eIF2α kinase, heme-regulated inhibitor (HRI), and inhibited eIF2α phosphorylation in response to an HRI agonist. Together our data suggest that pTRS1 inhibits PKR by binding to conserved amino acids in the PKR eIF2α binding site and blocking PKR kinase activity. IMPORTANCE The antiviral kinase PKR plays a critical role in controlling HCMV replication. This study furthered our understanding of how HCMV evades inhibition by PKR and identified new strategies for how PKR activity might be restored during infection to limit HCMV disease

    The Role of Adenovirus Serotype 5 E4 11k in the Relocalization of the Cellular P Body Proteins

    Get PDF
    Human adenoviruses are a useful tool to understand basic cellular biology in addition to viral infections. Historically, cellular splicing was first discovered in adenovirus, but other cellular processes, such as double-strand break repair and aggresome formation, have been further elucidated through adenoviral infection. The adenovirus protein E4 11k has been shown to disrupt cytoplasmic processing bodies (p bodies), which are not well-understood but are involved in mRNA metabolism. Several p body proteins were found to be reorganized in the cytoplasm with adenovirus serotype 5 (Ad5) able to cause the colocalization of these p body proteins with aggresomes. The p body protein Lsm1 has been found to colocalize with E4 11k in aggresomes, but Edc3 and Pat1b are two p body proteins that have not been as well-studied in adenovirus-infected cells. Cells were treated with cadmium chloride or infected with wild-type and mutant viruses before staining them to visualize the p body proteins and a marker for viral infection by confocal microscopy. We were able to determine that the presence of E4 11k was not necessary for relocalization of either Lsm1 or Edc3 to aggresomes, while Pat1b did not localize to aggresomes under any conditions tested. We wanted to characterize Pat1b relocalization further so we counted the number of Pat1b foci in mock-infected cells and then the virally-infected cells, and were able to determine that Ad5 E4 11k is necessary and sufficient to induce an increase in cytoplasmic Pat1b foci. We also determined that this increase in Pat1b foci appears to be serotype-specific when compared to Ad9 and Ad12 E4 11k protein. The lack of apparent change with Pat1b localization with Ad9 E4 11k expression was a novel finding that suggests there may be something unique about Pat1b and p body localization

    Multiple Transcripts Encode Full-Length Human Cytomegalovirus IE1 and IE2 Proteins during Lytic Infection

    Get PDF
    ABSTRACT Expression of the human cytomegalovirus (HCMV) IE1 and IE2 proteins is critical for the establishment of lytic infection and reactivation from viral latency. Defining the mechanisms controlling IE1 and IE2 expression is therefore important for understanding how HCMV regulates its replicative cycle. Here we identify several novel transcripts encoding full-length IE1 and IE2 proteins during HCMV lytic replication. Two of the alternative major immediate early (MIE) transcripts initiate in the first intron, intron A, of the previously defined MIE transcript, while others extend the 5′ untranslated region. Each of the MIE transcripts associates with polyribosomes in infected cells and therefore contributes to IE1 and IE2 protein levels. Surprisingly, deletion of the core promoter region of the major immediate early promoter (MIEP) from a plasmid containing the MIE genomic locus did not completely abrogate IE1 and IE2 expression. Instead, deletion of the MIEP core promoter resulted in increased expression of alternative MIE transcripts, suggesting that the MIEP suppresses the activity of the alternative MIE promoters. While the canonical MIE mRNA was the most abundant transcript at immediate early times, the novel MIE transcripts accumulated to levels equivalent to that of the known MIE transcript later in infection. Using two HCMV recombinants, we found that sequences in intron A of the previously defined MIE transcript are required for efficient IE1 and IE2 expression and viral replication. Together, our results identify new regulatory sequences controlling IE1 and IE2 expression and suggest that multiple transcription units act in concert to regulate IE1 and IE2 expression during lytic infection. IMPORTANCE The HCMV IE1 and IE2 proteins are critical regulators of HCMV replication, both during primary infection and reactivation from viral latency. This study expands our understanding of the sequences controlling IE1 and IE2 expression by defining novel transcriptional units controlling the expression of full-length IE1 and IE2 proteins. Our results suggest that alternative promoters may allow for IE1 and IE2 expression when MIEP activity is limiting, as occurs in latently infected cells

    Human cytomegalovirus regulation of eIF2α kinases

    Get PDF
    Viral infection is an inherently stressful event. Virus replication taxes cellular biosynthetic machinery and produces ligands that activate antiviral responses which impair normal cell function. These virus-induced stressors alter cell function, in part by activating a family of four kinases that phosphorylate the translation initiation factor eIF2α, leading to a dramatic reduction in protein synthesis. While eIF2α kinase activation typically inhibits virus replication, human cytomegalovirus (HCMV) efficiently replicates in the presence of persistent cell stress. Here we review the ways in which HCMV infection induces cellular stress responses and the mechanisms HCMV uses to evade and manipulate these responses to its own ends

    Complete genome sequences of 15 chikungunya virus isolates from Puerto Rico

    Get PDF
    Here, we report the complete genome sequences of 15 chikungunya virus strains isolated from human plasma from infected patients in Puerto Rico. The results show that currently circulating chikungunya strains in Puerto Rico are closely related

    Human cytomegalovirus pTRS1 stimulates cap-independent translation

    Get PDF
    Human cytomegalovirus (HCMV) manipulates multiple cellular processes to facilitate virus replication, including the control of mRNA translation. We previously showed that the HCMV TRS1 protein (pTRS1) promotes cap-dependent mRNA translation independent of its ability to antagonize the antiviral protein PKR. Here we find that pTRS1 enhances internal ribosome entry site (IRES) activity using a novel circular RNA reporter that lacks an mRNA cap and poly(A) tail. Additionally, pTRS1 expression increases the activity of cellular IRESs that control the expression of proteins needed for efficient HCMV replication. We find that the ability of pTRS1 to enhance cap-independent translation is separable from its ability to antagonize PKR, but requires the pTRS1 RNA binding domain. Together these data show that pTRS1 stimulates cap-independent translation and suggest a role for pTRS1 in alternative translation initiation pathways during HCMV infection
    • …
    corecore