4 research outputs found

    4‑Aminoquinolone Piperidine Amides: Noncovalent Inhibitors of DprE1 with Long Residence Time and Potent Antimycobacterial Activity

    No full text
    4-Aminoquinolone piperidine amides (AQs) were identified as a novel scaffold starting from a whole cell screen, with potent cidality on Mycobacterium tuberculosis (Mtb). Evaluation of the minimum inhibitory concentrations, followed by whole genome sequencing of mutants raised against AQs, identified decaprenylphosphoryl-β-d-ribose 2′-epimerase (DprE1) as the primary target responsible for the antitubercular activity. Mass spectrometry and enzyme kinetic studies indicated that AQs are noncovalent, reversible inhibitors of DprE1 with slow on rates and long residence times of ∼100 min on the enzyme. In general, AQs have excellent leadlike properties and good in vitro secondary pharmacology profile. Although the scaffold started off as a single active compound with moderate potency from the whole cell screen, structure–activity relationship optimization of the scaffold led to compounds with potent DprE1 inhibition (IC<sub>50</sub> < 10 nM) along with potent cellular activity (MIC = 60 nM) against Mtb

    Aminoazabenzimidazoles, a Novel Class of Orally Active Antimalarial Agents

    No full text
    Whole-cell high-throughput screening of the AstraZeneca compound library against the asexual blood stage of Plasmodium falciparum (<i>Pf</i>) led to the identification of amino imidazoles, a robust starting point for initiating a hit-to-lead medicinal chemistry effort. Structure–activity relationship studies followed by pharmacokinetics optimization resulted in the identification of <b>23</b> as an attractive lead with good oral bioavailability. Compound <b>23</b> was found to be efficacious (ED<sub>90</sub> of 28.6 mg·kg<sup>–1</sup>) in the humanized P. falciparum mouse model of malaria (<i>Pf</i>/SCID model). Representative compounds displayed a moderate to fast killing profile that is comparable to that of chloroquine. This series demonstrates no cross-resistance against a panel of <i>Pf</i> strains with mutations to known antimalarial drugs, thereby suggesting a novel mechanism of action for this chemical class
    corecore