4 research outputs found

    On-chip Labeling via Surface Initiated Enzymatic Polymerization (SIEP) for Nucleic Acids Hybridization Detection

    No full text
    <p>Current techniques for nucleic acid analysis often involve extensive sample preparation that requires skilled personnel and multiple purification steps. In this dissertation, we introduce an on-chip, isothermal, post-hybridization labeling and signal amplification technique that can directly interrogate unmodified DNA and RNA samples on a microarray format, eliminating the need for microarray sample pre-processing. </p><p>We name this technique Surface Initiated Enzymatic Polymerization (SIEP), where we exploit the ability of a template independent DNA polymerase called Terminal Deoxynucleotidyl Transferase (TdT) to catalyze the formation of long single-stranded DNA (ssDNA) chain from the 3'-end of a short DNA primer, which is tethered on the surface, and TdT's ability to incorporate unnatural reporter nucleotides, such as fluorescent nucleotides. We hypothesize that polymerization of a long ssDNA chain while incorporating multiple fluorescent nucleotides on target DNA or RNA hybridized to probe printed on a surface will provide a simple and powerful, isothermal method for on-chip labeling and signal amplification. </p><p>We developed the SIEP methodology by first characterizing TdT biochemical reaction to polymerize long homopolymer ssDNA (> 1000 bases) starting from the 3'-OH of ten bases oligonucleotides. We found that the preferred monomers (deoxynucleotide, dNTP) are dATP and dTTP, and that the length of the ssDNA extension is determined by the ratio of input monomer (dNTP) to initiator (short oligonucleotides). We also investigated TdT's ability to incorporate fluorescent dNTPs into a ssDNA chain by examining the effect of the molar ratios of fluorescent dNTP to natural dNTP on the initiation efficiency, the degree of fluorophore incorporation, the length and the polydispersity of the polymerized DNA strand. These experiments allowed us to incorporate up to ~50 fluorescent Cy3-labeled dNTPs per kilobase into a ssDNA chain. With the goal of using SIEP as an on-chip labeling method, we also quantified TdT mediated signal amplification on the surface by immobilizing ssDNA oligonucleotide initiators on a glass surface followed by SIEP of DNA. The incorporation of multiple fluorophores into the extended DNA chain by SIEP translated to a up to ~45 fold increase in signal amplification compared to the incorporation of a single fluorophore.</p><p>SIEP was then employed to detect hybridization of DNA (25 bases), short miRNA (21 bases) and long mRNA (1400 bases) by the post-hybridization, on-chip polymerization of fluorescently labeled ssDNA that was grown from the 3'-OH of hybridized target strands. A dose-response curve for detection of DNA hybridization by SIEP was generated, with a ~1 pM limit of detection (LOD) and a 2-log linear dynamic range while the detection of short miRNA and fragmented mRNA targets resulted in ~2 pM and ~10 pM LOD, respectively with a 3-log linear dynamic range.</p><p>We further developed SIEP for colorimetric detection by exploiting the presence of negatively charged phosphate backbone on the surface as target DNA or RNA hybridizes on the immobilized probe. The net negative charge on the surface is further increased by TdT catalyzed polymerization of long ssDNA. We then used positively charged gold nanoparticles as reporters, which can be further amplified through electroless metallization, creating DNA spots that are visible by eye. We observed an increase of 100 fold in LOD due to SIEP amplification.</p><p>Overall, we demonstrated the use of SIEP methodology to label unmodified target DNA and RNA on chip, which can be detected through fluorescence signal or colorimetric signal of metallized DNA spots. This methodology is straightforward and versatile, is compatible with current microarray technology, and can be implemented using commercially available reagents.</p>Dissertatio

    Direct Fluorescence Detection of RNA on Microarrays by Surface-Initiated Enzymatic Polymerization

    No full text
    We report the first demonstration of surface-initiated enzymatic polymerization (SIEP) for the direct detection of RNA in a fluorescence microarray format. This new method incorporates multiple fluorophores into an RNA strand using the two-step sequential and complementary reactions catalyzed by yeast poly­(A) polymerase (PaP) to incorporate deoxyadenosine triphosphate (dATP) at the 3′–OH of an RNA molecule, followed by terminal deoxynucleotidyl transferase (TdT) to catalyze the sequential addition of a mixture of natural and fluorescent deoxynucleotides (dNTPs) at the 3′–OH of an RNA–DNA hybrid. We found that the 3′-end of RNA can be efficiently converted into DNA (∼50% conversion) by polymerization of dATP using yeast PaP, and the short DNA strand appended to the end of the RNA by PaP acts as the initiator for the TdT-catalyzed polymerization of longer DNA strands from a mixture of natural and fluorescent dNTPs that contain up to ∼45 Cy3 fluorophores per 1 kb DNA. We obtained an ∼2 pM limit of detection (LOD) and a 3 log-linear dynamic range for hybridization of a short 21 base-long RNA target to an immobilized peptide nucleic acid probe, while fragmented mRNA targets from three different full length mRNA transcripts yielded a ∼10 pM LOD with a similar dynamic range in a microarray format

    Purification and characterization of heparan sulfate from human primary osteoblasts

    No full text
    Heparan sulfate (HS) is a linear, highly variable, highly sulfated glycosaminoglycan sugar whose biological activity largely depends on internal sulfated domains that mediate specific binding to an extensive range of proteins. In this study we employed anion exchange chromatography, molecular sieving and enzymatic cleavage on HS fractions purified from three compartments of cultured osteoblasts-soluble conditioned media, cell surface, and extracellular matrix (ECM). We demonstrate that the composition of HS chains purified from the different compartments is structurally non-identical by a number of parameters, and that these differences have significant ramifications for their ligand-binding properties. The HS chains purified of conditioned medium had twice the binding affinity for FGF2 when compared with either cell surface or ECM HS. In contrast, similar binding of BMP2 to the three types of HS was observed. These results suggest that different biological compartments of cultured cells have structurally and functionally distinct HS species that help to modulate the flow of HS-dependent factors between the ECM and the cell surface
    corecore