34 research outputs found

    Climate change: challenges and opportunities for global health.

    Get PDF
    IMPORTANCE: Health is inextricably linked to climate change. It is important for clinicians to understand this relationship in order to discuss associated health risks with their patients and to inform public policy. OBJECTIVES: To provide new US-based temperature projections from downscaled climate modeling and to review recent studies on health risks related to climate change and the cobenefits of efforts to mitigate greenhouse gas emissions. DATA SOURCES, STUDY SELECTION, AND DATA SYNTHESIS: We searched PubMed and Google Scholar from 2009 to 2014 for articles related to climate change and health, focused on governmental reports, predictive models, and empirical epidemiological studies. Of the more than 250 abstracts reviewed, 56 articles were selected. In addition, we analyzed climate data averaged over 13 climate models and based future projections on downscaled probability distributions of the daily maximum temperature for 2046-2065. We also compared maximum daily 8-hour average ozone with air temperature data taken from the National Oceanic and Atmospheric Administration, National Climate Data Center. RESULTS: By 2050, many US cities may experience more frequent extreme heat days. For example, New York and Milwaukee may have 3 times their current average number of days hotter than 32°C (90°F). High temperatures are also strongly associated with ozone exceedance days, for example, in Chicago, Illinois. The adverse health aspects related to climate change may include heat-related disorders, such as heat stress and economic consequences of reduced work capacity; respiratory disorders, including those exacerbated by air pollution and aeroallergens, such as asthma; infectious diseases, including vectorborne diseases and waterborne diseases, such as childhood gastrointestinal diseases; food insecurity, including reduced crop yields and an increase in plant diseases; and mental health disorders, such as posttraumatic stress disorder and depression, that are associated with natural disasters. Substantial health and economic cobenefits could be associated with reductions in fossil fuel combustion. For example, greenhouse gas emission policies may yield net economic benefit, with health benefits from air quality improvements potentially offsetting the cost of US and international carbon policies. CONCLUSIONS AND RELEVANCE: Evidence over the past 20 years indicates that climate change can be associated with adverse health outcomes. Health care professionals have an important role in understanding and communicating the related potential health concerns and the cobenefits from policies to reduce greenhouse gas emissions

    The Challenge of Sustaining Ocean Observations

    Get PDF
    Sustained ocean observations benefit many users and societal goals but could benefit many more. Such information is critical for using ocean resources responsibly and sustainably as the ocean becomes increasingly important to society. The contributions of many nations cooperating to develop the Global Ocean Observing System has resulted in a strong base of global and regional ocean observing networks. However, enhancement of the existing observation system has been constrained by flat funding and limited cooperation among present and potential users. At the same time, a variety of actors are seeking new deployments in remote and newly ice-free regions and new observing capabilities, including biological and biogeochemical sensors. Can these new needs be met? In this paper, a vision for how to sustain ocean observing in the future is presented. A key evolution will be to grow the pool of users, engaging end users across society. Users with shared values need to be brought together with commitment to sustainable use of the ocean in the broadest sense. Present planning for sustained observations builds on the development of the Global Ocean Observing System which has primarily targeted increased scientific understanding of ocean processes and of the ocean's role in climate. We must build on that foundation to develop an Ocean Partnership for Sustained Observing that will incorporate the growing needs of a broad constituency of users beyond climate and make the case for new resources. To be most effective this new Partnership should incorporate the principles of a collective impact organization, enabling closer engagement with the private sector, philanthropies, governments, NGOs, and other groups. Steps toward achieving this new Partnership are outlined in this paper, with the intent of establishing it early in the UN Decade of Ocean Science

    Projections of hydrofluorocarbon (HFC) emissions and the resulting global warming based on recent trends in observed abundances and current policies

    Get PDF
    The emissions of hydrofluorocarbons (HFCs) have increased significantly in the past 2 decades, primarily as a result of the phaseout of ozone-depleting substances under the Montreal Protocol and the use of HFCs as their replacements. In 2015, large increases were projected in HFC use and emissions in this century in the absence of regulations, contributing up to 0.5° C to global surface warming by 2100. In 2019, the Kigali Amendment to the Montreal Protocol came into force with the goal of limiting the use of HFCs globally, and currently, regulations to limit the use of HFCs are in effect in several countries. Here, we analyze trends in HFC emissions inferred from observations of atmospheric abundances and compare them with previous projections. Total CO2eq. inferred HFC emissions continue to increase through 2019 (to about 0.8 GtCO2eq.yr-1) but are about 20 % lower than previously projected for 2017-2019, mainly because of the lower global emissions of HFC-143a. This indicates that HFCs are used much less in industrial and commercial refrigeration (ICR) applications than previously projected. This is supported by data reported by the developed countries and the lower reported consumption of HFC-143a in China. Because this time period preceded the beginning of the Kigali provisions, this reduction cannot be linked directly to the provisions of the Kigali Amendment. However, it could indicate that companies transitioned away from the HFC-143a with its high global warming potential (GWP) for ICR applications in anticipation of national or global mandates. There are two new HFC scenarios developed based (1) on current trends in HFC use and Kigali-independent (K-I) control policies currently existing in several countries and (2) current HFC trends and compliance with the Kigali Amendment (KA-2022). These current policies reduce projected emissions in 2050 from the previously calculated 4.0-5.3 GtCO2eq.yr-1 to 1.9-3.6 GtCO2eq.yr-1. The added provisions of the Kigali Amendment are projected to reduce the emissions further to 0.9-1.0 GtCO2eq.yr-1 in 2050. Without any controls, projections suggest a HFC contribution of 0.28-0.44° C to global surface warming by 2100, compared to a temperature contribution of 0.14-0.31° C that is projected considering the national K-I policies current in place. Warming from HFCs is additionally limited by the Kigali Amendment controls to a contribution of about 0.04°C by 2100

    The seasonal footprinting mechanism in the CSIRO coupled general circulation models and in observations

    No full text
    Thesis (Ph. D.)--University of Washington, 2002The Seasonal Footprinting Mechanism (SFM) is defined herein. The SFM provides a means by which winter mid-latitude atmospheric variability over the North Pacific becomes an important external forcing of ENSO. During winter, when the mid-latitude atmosphere is most energetic, mid-latitude atmospheric variability imparts an SST "footprint" onto the ocean via changes in the net surface heat flux. This SST footprint persists into late spring and summer, when its subtropical portion forces an atmospheric circulation that includes zonal wind stress anomalies in the equatorial western Pacific. The coupled tropical system adjusts to these summer zonal wind stress anomalies, producing an ENSO-like pattern of variability.This dissertation combines an analysis of the SFM in a model framework with a separate analysis of the SFM in the observed record. While the latter analysis is more applicable for nature, the former plays a crucial role in providing a laboratory in which to distill the essential physics responsible for the SFM.The SFM is defined in the CSIRO coupled general circulation models. It is found that the SFM accounts for 25--50% of the model's interannual ENSO variability, and up to 75% of the model's interdecadal ENSO-like variability. Sensitivity experiments confirm an essential role of the oceanic mixed layer (and hence the SST footprint) in the northern tropics and subtropics, and highlight the importance of the seasonal response in creating zonal wind stress anomalies that influence the tropical ocean waveguide (and hence ENSO).The observed record suggests the SFM is a leading contributor to the stochastic forcing of ENSO. Two separate statistical analyses are presented, both of which yield results that closely resemble those from the CSIRO models. Both analyses indicate that ENSO is preceded by sea level pressure (SLP) anomalies that closely resemble the North Pacific Oscillation (NPO) during the preceding winter. It is shown that NPO-like SLP anomalies exhibit significant skill in predicting ENSO up to three seasons in advance. The strong relationships between the NPO and ENSO may enhance predictability of ENSO, and support the notion that ENSO may be in a linearly stable regime in nature

    518 JOURNAL OF CLIMATE VOLUME 22 Midlatitude Excitation of Tropical Variability in the Pacific: The Role of Thermodynamic Coupling and Seasonality*

    No full text
    A set of ensemble model experiments using the National Center for Atmospheric Research Community Atmospheric Model version 3.0 (CAM3) is run to investigate the tropical Pacific response to midlatitude atmospheric variability associated with the atmospheric North Pacific Oscillation (NPO). Heat flux anomalies associated with the NPO are used to force a set of model simulations during boreal winter (when the NPO is most energetic), after which the forcing is switched off and the coupled model evolves on its own. Sea surface temperature (SST) and wind anomalies continue to amplify in the tropical Pacific after the imposed forcing has been shut off, indicating that coupled ocean–atmosphere interactions in the tropical Pacific alter the spatial and temporal structure of variability associated with midlatitude forcing. The tropical circulation evolves through feedbacks between the surface wind, evaporation, and SST (the WES feedback), as well as through changes in the shortwave radiative heat flux (caused by changes in convection). Sensitivity experiments are run to investigate how thermodynamic coupling and seasonality affect the tropical response to NPO-related forcing. Seasonality is found to affect the WES feedback through (i) altering the sensitivity of surface evaporation to changes in the low-level wind field and (ii) altering the structure and strength of the lower-level wind response to SST anomalies. Thermodynamic coupling causes an equatorward and westward development of SST anomalies and an associated equatorward shift in the lower-level zonal wind anomalies. 1

    100 Years of Progress in Understanding the Dynamics of Coupled Atmosphere–Ocean Variability

    No full text
    Abstract In situ observation networks and reanalyses products of the state of the atmosphere and upper ocean show well-defined, large-scale patterns of coupled climate variability on time scales ranging from seasons to several decades. We summarize these phenomena and their physics, which have been revealed by analysis of observations, by experimentation with uncoupled and coupled atmosphere and ocean models with a hierarchy of complexity, and by theoretical developments. We start with a discussion of the seasonal cycle in the equatorial tropical Pacific and Atlantic Oceans, which are clearly affected by coupling between the atmosphere and the ocean. We then discuss the tropical phenomena that only exist because of the coupling between the atmosphere and the ocean: the Pacific and Atlantic meridional modes, the El Niño–Southern Oscillation (ENSO) in the Pacific, and a phenomenon analogous to ENSO in the Atlantic. For ENSO, we further discuss the sources of irregularity and asymmetry between warm and cold phases of ENSO, and the response of ENSO to forcing. Fundamental to variability on all time scales in the midlatitudes of the Northern Hemisphere are preferred patterns of uncoupled atmospheric variability that exist independent of any changes in the state of the ocean, land, or distribution of sea ice. These patterns include the North Atlantic Oscillation (NAO), the North Pacific Oscillation (NPO), and the Pacific–North American (PNA) pattern; they are most active in wintertime, with a temporal spectrum that is nearly white. Stochastic variability in the NPO, PNA, and NAO force the ocean on days to interannual times scales by way of turbulent heat exchange and Ekman transport, and on decadal and longer time scales by way of wind stress forcing. The PNA is partially responsible for the Pacific decadal oscillation; the NAO is responsible for an analogous phenomenon in the North Atlantic subpolar gyre. In models, stochastic forcing by the NAO also gives rise to variability in the strength of the Atlantic meridional overturning circulation (AMOC) that is partially responsible for multidecadal anomalies in the North Atlantic climate known as the Atlantic multidecadal oscillation (AMO); observations do not yet exist to adequately determine the physics of the AMO. We review the progress that has been made in the past 50 years in understanding each of these phenomena and the implications for short-term (seasonal-to-interannual) climate forecasts. We end with a brief discussion of advances of things that are on the horizon, under the rug, and over the rainbow

    A Framework to Decompose Wind-Driven Biases in Climate Models Applied to CCSM/CESM in the Eastern Pacific

    No full text
    Annual cycle biases in climate models are suspected to be largely wind driven along the equator, with winds first driving SST changes that then influence the overlying atmospheric circulation. This study utilizes an experimental approach to test the hypothesis that seasonally varying climatological wind stress directly contributes to the SST and ITCZ biases in the eastern equatorial Pacific. Results show that removing the wind stress annual cycle from the ocean forcing, without constraining the atmosphere and ocean dynamics or buoyancy coupling in the NCAR CCSM4/CESM1.2.0 models, results in a remarkable reduction in the SST annual cycle and springtime ITCZ biases. Improvements in the SST occur primarily because wind-driven errors in the variability of horizontal temperature advection are damped. The ITCZ problem is closely tied to biases in the wind-driven near-equatorial SST. Additional model experiments and analyses reveal that the contributions from zonal and meridional wind stress to the biases are locally forced within 10°S–10°N and additive, suggesting that the biases are driven by independent processes. The zonal and meridional components drive different aspects of the SST annual cycle bias and contribute to the springtime ITCZ bias in different zonal locations. Both the atmosphere and ocean components of the model, separately, are shown to produce unfavorable ocean surface conditions for the simulation of a realistic springtime ITCZ, deeming this a coupled problem. Results show that wind stress may act as a pathway for process-based errors in climate models to directly drive SST and ITCZ biases

    Future changes in state-level population-weighted degree days in the U.S

    No full text
    This study analyzes future changes in population-weighted degree-days in 48 states over the contiguous U.S. Using temperature data from the NASA Earth Exchange Global Daily Downscaled Projects and population data from NASA Socioeconomic Data and Applications Center, we computed population-weighted degree-days (PHDD and PCDD) and EDD (energy degree-days, PHDD + PCDD) over the 21st century, under a business-as-usual scenario. Results show that although the rising temperature is the primary driver, population distribution and projection play undeniable roles in estimating state-level heating and cooling demand. Throughout the 21st century, the U.S. is projected to experience a heating-to-cooling shift in energy demand, with the number of heating-dominant states dropping from 37 to 17 and the length of cooling seasons extending by 2 months (indicating a corresponding reduction in heating seasons) in all states by late-century. Meanwhile, a more homogenous EDD pattern is expected due to the increasing PCDD and decreasing PHDD, and the peak EDD month will switch from winter to summer in 15 out of 48 states. Our study provides a more nuanced understanding of future heating and cooling demand by examining both annual and monthly variations in the demands and how their relative dominance in a single framework may evolve over time. The study’s state-level perspective can provide valuable insights for policymakers, energy providers, and other stakeholders regarding the forthcoming shift in demand patterns and related building operations and energy consumption at both state and regional levels
    corecore