33 research outputs found

    A Survey of Containner Breeding Mosquito Species in Kuching Area

    Get PDF
    A visual larval inspection was done from October 2010 to January 2011 to identify the common species of container-breeding mosquitoes in Kuching, Sarawak. A total of 14 areas in Kuching were surveyed. All the 1216 larvae collected were identified. The dominant species was Ae. albopictus (79.03%), followed by Culex sp. (20.97%). The most common breeding sources were plastic containers. The container index was the highest for Taman Budaya, Kuching (83.33%). Larval breeding habitats were found within the temperature range of 25.1⁰C to 33.0⁰C and pH of 3.0 to 9.9. There is no significant difference of water temperature between Ae. albopictus (30.2⁰C ± 1.0) and Culex sp. (30.2⁰C ± 0.6). However, the pH of water for Culex sp. (7.6 ± 0.1) was found significantly lower than that of Ae. albopictus (7.8 ± 0.9). Mean pH of natural containers (6.7 ±1.3) was significantly lower than mean pH for artificial containers (7.8 ± 1.1). Mix breeding of Ae. albopictus and Culex sp. was found in coconut and plant saucers collected from Kampung Kudei and Waterfront, respectively. Based on its dominance and versatility, we suggest that Ae. albopictus may present as a sole vector for dengue virus in Kuching

    Sub-micron moulding topological mass transport regimes in angled vortex fluidic flow

    Get PDF
    Shear stress in dynamic thin films, as in vortex fluidics, can be harnessed for generating non-equilibrium conditions, but the nature of the fluid flow is not understood. A rapidly rotating inclined tube in the vortex fluidic device (VFD) imparts shear stress (mechanical energy) into a thin film of liquid, depending on the physical characteristics of the liquid and rotational speed,ω, tilt angle,Ξ, and diameter of the tube. Through understanding that the fluid exhibits resonance behaviours from the confining boundaries of the glass surface and the meniscus that determines the liquid film thickness, we have established specific topological mass transport regimes. These topologies have been established through materials processing, as spinning top flow normal to the surface of the tube, double-helical flow across the thin film, and spicular flow, a transitional region where both effects contribute. The manifestation of mass transport patterns within the film have been observed by monitoring the mixing time, temperature profile, and film thickness against increasing rotational speed,ω. In addition, these flow patterns have unique signatures that enable the morphology of nanomaterials processed in the VFD to be predicted, for example in reversible scrolling and crumbling graphene oxide sheets. Shear-stress induced recrystallisation, crystallisation and polymerisation, at different rotational speeds, provide moulds of high-shear topologies, as ‘positive’ and ‘negative’ spicular flow behaviour. ‘Molecular drilling’ of holes in a thin film of polysulfone demonstrate spatial arrangement of double-helices. The grand sum of the different behavioural regimes is a general fluid flow model that accounts for all processing in the VFD at an optimal tilt angle of 45°, and provides a new concept in the fabrication of novel nanomaterials and controlling the organisation of matter

    Laser irradiated vortex fluidic mediated synthesis of luminescent carbon nanodots under continuous flow

    Get PDF
    Published on 15 January 2018.Carbon nanodots (CDs) with size dependent fluorescence are synthesized from multi-walled carbon nanotubes (MWCNTs) under continuous flow in a vortex fluidic device (VFD) when irradiated by a pulsed laser with a wavelength of 1064 nm, without subsequent passivation procedures. The CDs have a relatively narrow size distribution averaging ca. 6 nm in diameter, and have low cytotoxicity and high colloidal stability with the highest emission intensity of the solution at 450 nm under a 345 nm excitation wavelength. Further downstream processing on the as-processed CDs revealed tunability of the emission from 450 nm to 325 nm.Xuan Luo, Ahmed Hussein Mohammed Al-Antaki, Kasturi Vimalanathan, Jillian Moffatt, Kun Zheng, Yichao Zou, Jin Zou, Xiaofei Duan, Robert N. Lamb, Shujun Wang, Qin Li, Wei Zhang and Colin L. Rasto

    Fluid dynamic lateral slicing of high tensile strength carbon nanotubes

    Get PDF
    Lateral slicing of micron length carbon nanotubes (CNTs) is effective on laser irradiation of the materials suspended within dynamic liquid thin films in a microfluidic vortex fluidic device (VFD). The method produces sliced CNTs with minimal defects in the absence of any chemical stabilizers, having broad length distributions centred at ca 190, 160 nm and 171 nm for single, double and multi walled CNTs respectively, as established using atomic force microscopy and supported by small angle neutron scattering solution data. Molecular dynamics simulations on a bent single walled carbon nanotube (SWCNT) with a radius of curvature of order 10 nm results in tearing across the tube upon heating, highlighting the role of shear forces which bend the tube forming strained bonds which are ruptured by the laser irradiation. CNT slicing occurs with the VFD operating in both the confined mode for a finite volume of liquid and continuous flow for scalability purposes

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Medicinal plants – prophylactic and therapeutic options for gastrointestinal and respiratory diseases in calves and piglets? A systematic review

    Full text link

    Nitrate uptake by p-phosphonic acid or p-(trimethylammonium)methyl calix[8]arene stablized laminar materials

    No full text
    Graphite, BN, MoS2 and WS2 are readily exfoliated using probe sonication in the presence of p-(trimethylammonium)methyl-calix[8]arene resulting in few-layer laminarmaterial. The positively charged material is effective in the removal of nitrate ions from waste effluent, as is the negatively charged corresponding material stablized by partially deprotonated p-phosphonic acid calix[8]arene, with scope for efficient recycling

    Efficient Production of Phosphorene Nanosheets via Shear Stress Mediated Exfoliation for Low-Temperature Perovskite Solar Cells

    Full text link
    A simple and fast "top-down" protocol is introduced herein to prepare solution processable few-layer phosphorene nanosheets using vortex fluidic mediated exfoliation under near-infrared (NIR) pulsed laser irradiation. This novel shear-exfoliation method requires short processing times and produces highly crystalline, atomically thin phosphorene nanosheets (4.3 +/- 0.4 nm). The as-prepared phosphorene nanosheets are used as an effective electron transporting material (ETM) for low-temperature processed, planar n-i-p perovskite solar cells (PSCs). With the addition of phosphorene, the average power conversion efficiency (PCE) increases from 14.32% to 16.53% with a maximum PCE of 17.85% observed for the phosphorene incorporated PSCs which is comparable to the devices made using the traditional high-temperature protocol. Experimental and theoretical (density-functional theory) investigations reveal the PCE improvements are due to the high carrier mobility and suitable band energy alignment of the phosphorene. The work not only paves the way for novel synthesis of 2D materials, but also opens a new avenue in using phosphorene as an efficient ETM in photovoltaic devices
    corecore