76 research outputs found
Electronic Structure of CeFeAsO1-xFx (x=0, 0.11/x=0.12) compounds
We report an extensive study on the intrinsic bulk electronic structure of
the high-temperature superconductor CeFeAsO0.89F0.11 and its parent compound
CeFeAsO by soft and hard x-ray photoemission, x-ray absorption and soft-x-ray
emission spectroscopies. The complementary surface/bulk probing depth, and the
elemental and chemical sensitivity of these techniques allows resolving the
intrinsic electronic structure of each element and correlating it with the
local structure, which has been probed by extended-x-ray absorption fine
structure spectroscopy. The measurements indicate a predominant 4f1 (i.e. Ce3+)
initial state configuration for Cerium and an effective valence-band-to-4f
charge-transfer screening of the core hole. The spectra also reveal the
presence of a small Ce f0 initial state configuration, which we assign to the
occurrence of an intermediate valence state. The data reveal a reasonably good
agreement with the partial density of states as obtained in standard density
functional calculations over a large energy range. Implications for the
electronic structure of these materials are discussed.Comment: Accepted for publication in Phys. Rev.
Doping-Dependent and Orbital-Dependent Band Renormalization in Ba(Fe_1-xCo_x)_2As_2 Superconductors
Angle resolved photoemission spectroscopy of Ba(Fe1-xCox)2As2 (x = 0.06,
0.14, and 0.24) shows that the width of the Fe 3d yz/zx hole band depends on
the doping level. In contrast, the Fe 3d x^2-y^2 and 3z^2-r^2 bands are rigid
and shifted by the Co doping. The Fe 3d yz/zx hole band is flattened at the
optimal doping level x = 0.06, indicating that the band renormalization of the
Fe 3d yz/zx band correlates with the enhancement of the superconducting
transition temperature. The orbital-dependent and doping-dependent band
renormalization indicates that the fluctuations responsible for the
superconductivity is deeply related to the Fe 3d orbital degeneracy.Comment: 5 pages, 4 figure
The nature of ferromagnetism in the chiral helimagnet
The chiral helimagnet, , hosts exotic spin textures, whose
influence on the magneto-transport properties, make this material an ideal
candidate for future spintronic applications. To date, the interplay between
macroscopic magnetic and transport degrees of freedom is believed to result
from a reduction in carrier scattering following spin order. Here, we present
electronic structure measurements through the helimagnetic transition
temperature, that challenges this view by showing a Fermi surface
comprised of strongly hybridized Nb- and Cr- derived electronic states, and
spectral weight in proximity to the Fermi level to anomalously increases as
temperature is lowered below . These findings are rationalized on the
basis of first principle, density functional theory calculations, which reveal
a large nearest-neighbor exchange energy, suggesting the interaction between
local spin moments and hybridized Nb- and Cr- derived itinerant states to go
beyond the perturbative interaction of Ruderman-Kittel-Kasuya-Yosida,
suggesting instead a mechanism rooted in a Hund's exchange interaction
The nature of ferromagnetism in the chiral helimagnet Cr1/3NbS2
The chiral helimagnet Cr1/3NbS2 hosts exotic spin textures, whose influence on the magneto-transport properties make this material an ideal candidate for future spintronic applications. To date, the interplay between macroscopic magnetic and transport degrees of freedom is believed to result from a reduction in carrier scattering following spin order. Here, we present electronic structure measurements across the helimagnetic transition temperature TC that challenges this view. We show that the Fermi surface is comprised of strongly hybridized Nb- and Cr-derived electronic states, and that spectral weight close to the Fermi level increases anomalously as the temperature is lowered below TC. These findings are rationalized on the basis of first principle density functional theory calculations, which reveal a large nearest-neighbor exchange energy, suggesting the interaction between local spin moments and hybridized Nb- and Cr-derived itinerant states to go beyond the perturbative interaction of Ruderman-Kittel-Kasuya-Yosida, suggesting instead a mechanism rooted in a Hund’s exchange interaction
Orbital Symmetry of Ba(Fe1-xCox)2As2 Superconductors Probed with X-ray Absorption Spectroscopy
The orbital symmetries of electron doped iron-arsenide superconductors
Ba(Fe1-xCox)2As2 have been measured with x-ray absorption spectroscopy. The
data reveal signatures of Fe d electron itinerancy, weak electronic
correlations, and a high degree of Fe-As hybridization related to the bonding
topology of the Fe dxz+yz states, which are found to contribute substantially
at the Fermi level. The energies and detailed orbital character of Fe and As
derived unoccupied s and d states are found to be in remarkably good agreement
with the predictions of standard density functional theory.Comment: Accepted for publication in Phys. Rev. B, 3 figures. Minor
corrections adde
- …