52 research outputs found

    Sexual Transmission of XMRV: A Potential Infection Route

    Get PDF
    Although XMRV dissemination in humans is a matter of debate, the prostate of select patients seem to harbor XMRV, which raises questions about its potential route of transmission. We established a model of infection in rhesus macaques inoculated with XMRV. In spite of the intravenous inoculation, all infected macaques exhibited readily detectable XMRV signal in the reproductive tract of all 4 males and 1 female during both acute and chronic infection stages. XMRV showed explosive growth in the acini of prostate during acute but not chronic infection. In seminal vesicles, epididymis, and testes, XMRV protein production was detected throughout infection in interstitial or epithelial cells. In the female monkey, epithelial cells in the cervix and vagina were also positive for XMRV gag. The ready detection of XMRV in the reproductive tract of male and female macaques infected intravenously suggests the potential for sexual transmission for XMRV

    Vaccination against Heterologous R5 Clade C SHIV: Prevention of Infection and Correlates of Protection

    Get PDF
    A safe, efficacious vaccine is required to stop the AIDS pandemic. Disappointing results from the STEP trial implied a need to include humoral anti-HIV-1 responses, a notion supported by RV144 trial data even though correlates of protection are unknown. We vaccinated rhesus macaques with recombinant simian immunodeficiency virus (SIV) Gag-Pol particles, HIV-1 Tat and trimeric clade C (HIV-C) gp160, which induced cross-neutralizing antibodies (nAbs) and robust cellular immune responses. After five low-dose mucosal challenges with a simian-human immunodeficiency virus (SHIV) that encoded a heterologous R5 HIV-C envelope (22.1% divergence from the gp160 immunogen), 94% of controls became viremic, whereas one third of vaccinees remained virus-free. Upon high-dose SHIV rechallenge, all controls became infected, whereas some vaccinees remained aviremic. Peak viremia was inversely correlated with both cellular immunity (p<0.001) and cross-nAb titers (p<0.001). These data simultaneously linked cellular as well as humoral immune responses with the degree of protection for the first time

    R5 Clade C SHIV Strains with Tier 1 or 2 Neutralization Sensitivity: Tools to Dissect Env Evolution and to Develop AIDS Vaccines in Primate Models

    Get PDF
    Background: HIV-1 clade C (HIV-C) predominates worldwide, and anti-HIV-C vaccines are urgently needed. Neutralizing antibody (nAb) responses are considered important but have proved difficult to elicit. Although some current immunogens elicit antibodies that neutralize highly neutralization-sensitive (tier 1) HIV strains, most circulating HIVs exhibiting a less sensitive (tier 2) phenotype are not neutralized. Thus, both tier 1 and 2 viruses are needed for vaccine discovery in nonhuman primate models. Methodology/Principal Findings: We constructed a tier 1 simian-human immunodeficiency virus, SHIV-1157ipEL, by inserting an “early,” recently transmitted HIV-C env into the SHIV-1157ipd3N4 backbone [1] encoding a “late” form of the same env, which had evolved in a SHIV-infected rhesus monkey (RM) with AIDS. SHIV-1157ipEL was rapidly passaged to yield SHIV-1157ipEL-p, which remained exclusively R5-tropic and had a tier 1 phenotype, in contrast to “late” SHIV-1157ipd3N4 (tier 2). After 5 weekly low-dose intrarectal exposures, SHIV-1157ipEL-p systemically infected 16 out of 17 RM with high peak viral RNA loads and depleted gut CD4+^+ T cells. SHIV-1157ipEL-p and SHIV-1157ipd3N4 env genes diverge mostly in V1/V2. Molecular modeling revealed a possible mechanism for the increased neutralization resistance of SHIV-1157ipd3N4 Env: V2 loops hindering access to the CD4 binding site, shown experimentally with nAb b12. Similar mutations have been linked to decreased neutralization sensitivity in HIV-C strains isolated from humans over time, indicating parallel HIV-C Env evolution in humans and RM. Conclusions/Significance: SHIV-1157ipEL-p, the first tier 1 R5 clade C SHIV, and SHIV-1157ipd3N4, its tier 2 counterpart, represent biologically relevant tools for anti-HIV-C vaccine development in primates

    The cytokine network of acute HIV infection: a promising target for vaccines and therapy to reduce viral set-point?

    Get PDF
    Cytokines play a central role in the pathogenesis of many diseases, including HIV infection. However, the role of the cytokine network in early HIV infection is only now starting to be elucidated. A number of studies conducted in recent years have indicated that cytokines of the acute/early stages of HIV and SIV infection can impact viral set-point months later, and this is of critical importance since viral set-point during chronic HIV infection affects virus transmission and disease progression. This raises the question whether modulating the cytokine environment during acute/early HIV infection can be a target for novel approaches to develop a vaccine and therapeutics. In this review we focus on the kinetics and function of cytokines during acute HIV and SIV infection and how these may impact viral set-point. We also discuss unresolved questions that are essential for our understanding of the role of acute infection cytokines in HIV infection and that, if answered, may suggest novel therapeutic and vaccine strategies to control the worldwide HIV pandemic

    Early cytokines determine pathogenesis of HIV/SIV infection.

    No full text
    <p>(A) Several cytokines are produced during acute SIV infection, either at the site of initial viral exposure or in draining or distal lymphoid tissue (cytokine mRNA kinetics are adapted from <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1002055#ppat.1002055-Abel1" target="_blank">[18]</a>, <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1002055#ppat.1002055-Li1" target="_blank">[22]</a>; scale depicts fold changes over time for each individual cytokine). (B) Cytokines either increase (↑) or decrease (↓) immune parameters or target availability and therefore directly influence viral replication and viral set-point (effects of cytokines are adapted from <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1002055#ppat.1002055-Ansari1" target="_blank">[8]</a>, <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1002055#ppat.1002055-Mueller1" target="_blank">[10]</a>, <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1002055#ppat.1002055-Naicker1" target="_blank">[23]</a>, <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1002055#ppat.1002055-Shin1" target="_blank">[66]</a>, <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1002055#ppat.1002055-Wang1" target="_blank">[70]</a>). (C) Pro-inflammatory and immunoregulatory cytokines either negatively or positively modulate immune responses and viral replication and this determines viral set-points and disease progression during chronic HIV/SIV infection.</p

    Characterization of T-Cell Responses in Macaques Immunized with a Single Dose of HIV DNA Vaccine ▿ †

    No full text
    The optimization of immune responses (IR) induced by HIV DNA vaccines in humans is one of the great challenges in the development of an effective vaccine against AIDS. Ideally, this vaccine should be delivered in a single dose to immunize humans. We recently demonstrated that the immunization of mice with a single dose of a DNA vaccine derived from pathogenic SHIVKU2 (Δ4SHIVKU2) induced long-lasting, potent, and polyfunctional HIV-specific CD8+ T-cell responses (G. Arrode, R. Hegde, A. Mani, Y. Jin, Y. Chebloune, and O. Narayan, J. Immunol. 178:2318-2327, 2007). In the present work, we expanded the characterization of the IR induced by this DNA immunization protocol to rhesus macaques. Animals immunized with a single high dose of Δ4SHIVKU2 DNA vaccine were monitored longitudinally for vaccine-induced IR using multiparametric flow cytometry-based assays. Interestingly, all five immunized macaques developed broad and polyfunctional HIV-specific T-cell IR that persisted for months, with an unusual reemergence in the blood following an initial decline but in the absence of antibody responses. The majority of vaccine-specific CD4+ and CD8+ T cells lacked gamma interferon production but showed high antigen-specific proliferation capacities. Proliferative CD8+ T cells expressed the lytic molecule granzyme B. No integrated viral vector could be detected in mononuclear cells from immunized animals, and this high dose of DNA did not induce any detectable autoimmune responses against DNA. Taken together, our comprehensive analysis demonstrated for the first time the capacity of a single high dose of HIV DNA vaccine alone to induce long-lasting and polyfunctional T-cell responses in the nonhuman primate model, bringing new insights for the design of future HIV vaccines

    Cytokine Adjuvants IL-7 and IL-15 Improve Humoral Responses of a SHIV LentiDNA Vaccine in Animal Models

    No full text
    International audienceHIV-1 remains a major public health issue worldwide in spite of efficacious antiviral therapies, but with no cure or preventive vaccine. The latter has been very challenging, as virus infection is associated with numerous escape mechanisms from host specific immunity and the correlates of protection remain incompletely understood. We have developed an innovative vaccine strategy, inspired by the efficacy of live-attenuated virus, but with the safety of a DNA vaccine, to confer both cellular and humoral responses. The CAL-SHIV-IN− lentiDNA vaccine comprises the backbone of the pathogenic SHIVKU2 genome, able to mimic the early phase of viral infection, but with a deleted integrase gene to ensure safety precluding integration within the host genome. This vaccine prototype, constitutively expressing viral antigen under the CAEV LTR promoter, elicited a variety of vaccine-specific, persistent CD4 and CD8 T cells against SIV-Gag and Nef up to 80 weeks post-immunization in cynomolgus macaques. Furthermore, these specific responses led to antiviral control of the pathogenic SIVmac251. To further improve the efficacy of this vaccine, we incorporated the IL-7 or IL-15 genes into the CAL-SHIV-IN− plasmid DNA in efforts to increase the pool of vaccine-specific memory T cells. In this study, we examined the immunogenicity of the two co-injected lentiDNA vaccines CAL-SHIV-IN− IRES IL-7 and CAL-SHIV-IN− IRES IL-15 in BALB/cJ mice and rhesus macaques and compared the immune responses with those generated by the parental vaccine CAL-SHIV-IN−. This co-immunization elicited potent vaccine-specific CD4 and CD8 T cells both in mice and rhesus macaques. Antibody-dependent cell-mediated cytotoxicity (ADCC) antibodies were detected up to 40 weeks post-immunization in both plasma and mucosal compartments of rhesus macaques and were enhanced by the cytokines

    A single lentivector DNA based immunization contains a late heterologous SIVmac251 mucosal challenge infection

    No full text
    Variety of conventional vaccine strategies tested against HIV-1 have failed to induce protection against HIV acquisition or durable control of viremia. Therefore, innovative strategies that can induce long lasting protective immunity against HIV chronic infection are needed. Recently, we developed an integration-defective HIV lentiDNA vaccine that undergoes a single cycle of replication in target cells in which most viral antigens are produced. A single immunization with such lentiDNA induced long-lasting T-cell and modest antibody responses in cynomolgus macaques. Here eighteen months after this single immunization, all animals were subjected to repeated low dose intra-rectal challenges with a heterologous pathogenic SIVmac251 isolate. Although the viral set point in SIVmac-infected cynomolgus is commonly lower than that seen in Indian rhesus macaques, the vaccinated group of macaques displayed a two log reduction of peak of viremia followed by a progressive and sustained control of virus replication relative to control animals. This antiviral control correlated with antigen-specific CD4+ and CD8+ T cells with high capacity of recall responses comprising effector and central memory T cells but also memory T cell precursors. This is the first description of SIV control in NHP model infected at 18 months following a single immunization with a non-integrative single cycle lentiDNA HIV vaccine. While not delivering sterilizing immunity, our single immunization strategy with a single-cycle lentivector DNA vaccine appears to provide an interesting and safe vaccine platform that warrants further exploration
    • 

    corecore