19 research outputs found

    Distribution of melanopsin positive neurons in pigmented and albino mice: evidence for melanopsin interneurons in the mouse retina.

    Get PDF
    Here we have studied the population of intrinsically photosensitive retinal ganglion cells (ipRGCs) in adult pigmented and albino mice. Our data show that although pigmented (C57Bl/6) and albino (Swiss) mice have a similar total number of ipRGCs, their distribution is slightly different: while in pigmented mice ipRGCs are more abundant in the temporal retina, in albinos the ipRGCs are more abundant in superior retina. In both strains, ipRGCs are located in the retinal periphery, in the areas of lower Brn3a(+)RGC density. Both strains also contain displaced ipRGCs (d-ipRGCs) in the inner nuclear layer (INL) that account for 14% of total ipRGCs in pigmented mice and 5% in albinos. Tracing from both superior colliculli shows that 98% (pigmented) and 97% (albino) of the total ipRGCs, become retrogradely labeled, while double immunodetection of melanopsin and Brn3a confirms that few ipRGCs express this transcription factor in mice. Rather surprisingly, application of a retrograde tracer to the optic nerve (ON) labels all ipRGCs, except for a sub-population of the d-ipRGCs (14% in pigmented and 28% in albino, respectively) and melanopsin positive cells residing in the ciliary marginal zone (CMZ) of the retina. In the CMZ, between 20% (pigmented) and 24% (albino) of the melanopsin positive cells are unlabeled by the tracer and we suggest that this may be because they fail to send an axon into the ON. As such, this study provides the first evidence for a population of melanopsin interneurons in the mammalian retina

    Inherited photoreceptor degeneration causes the death of melanopsin-positive retinal ganglion cells and increases their coexpression of brn3a

    Get PDF
    Purpose: To study the population of intrinsically photosensitive retinal ganglion cells (melanopsin-expressing RGCs, m+RGCs) in P23H-1 rats, a rat model of inherited photoreceptor degeneration. Methods: At postnatal (P) times P30, P365, and P540, retinas from P23H dystrophic rats (line 1, rapid degeneration; and line 3, slow degeneration) and Sprague Dawley (SD) rats (control) were dissected as whole-mounts and immunodetected for melanopsin and/or Brn3a. The dendritic arborization of m+RGCs and the numbers of Brn3a+RGCs and m+RGCs were quantified and their retinal distribution and coexpression analyzed. Results: In SD rats, aging did not affect the population of Brn3a+RGCs or m+RGCs or the percentage that showed coexpression (0.27%). Young P23H-1 rats had a significantly lower number of Brn3a+RGCs and showed a further decline with age. The population of m+RGCs in young P23H-1 rats was similar to that found in SD rats and decreased by 22.6% and 28.2% at P365 and P540, respectively, similarly to the decrease of the Brn3a+RGCs. At these ages the m+RGCs showed a decrease of their dendritic arborization parameters, which was similar in both the P23H-1 and P23H-3 lines. The percentage of coexpression of Brn3a was, however, already significantly higher at P30 (3.31%) and increased significantly with age (10.65% at P540). Conclusions: Inherited photoreceptor degeneration was followed by secondary loss of Brn3a+RGCs and m+RGCs. Surviving m+RGCs showed decreased dendritic arborization parameters and increased coexpression of Brn3a and melanopsin, phenotypic and molecular changes that may represent an effort to resist degeneration and/or preferential survival of m+RGCs capable of synthesizing Brn3a

    Quantitative and Topographical Analysis of the Losses of Cone Photoreceptors and Retinal Ganglion Cells Under Taurine Depletion

    No full text
    PURPOSE: Taurine depletion is known to induce photoreceptor degeneration and was recently found to also trigger retinal ganglion cell (RGC) loss similar to the retinal toxicity of vigabatrin. Our objective was to study the topographical loss of RGCs and cone photoreceptors, with a distinction between the two cone types (S- and L- cones) in an animal model of induced taurine depletion. METHODS: We used the taurine transporter (Tau-T) inhibitor, guanidoethane sulfonate (GES), to induce taurine depletion at a concentration of 1% in the drinking water. Spectral-domain optical coherence tomography (SD-OCT) and electroretinograms (ERG) were performed on animals after 2 months of GES treatment administered through the drinking water. Retinas were dissected as wholemounts and immunodetection of Brn3a (RGC), S-opsin (S-cones), and L-opsin (L-cones) was performed. The number of Brn3a+ RGCs, and L- and S-opsin+ cones was automatically quantified and their retinal distribution studied using isodensity maps. RESULTS: The treatment resulted in a significant reduction in plasma taurine levels and a profound dysfunction of visual performance as shown by ERG recordings. Optical coherence tomography analysis revealed that the retina was thinner in the taurine-depleted group. S-opsin+cones were more affected (36%) than L-opsin+cones (27%) with greater cone cell loss in the dorsal area whereas RGC loss (12%) was uniformly distributed. CONCLUSIONS: This study confirms that taurine depletion causes RGC and cone loss. Electroretinograms results show that taurine depletion induces retinal dysfunction in photoreceptors and in the inner retina. It establishes a gradient of cell loss depending on the cell type from S-opsin+cones, L-opsin+cones, to RGCs. The greater cell loss in the dorsal retina and of the S-cone population may underline different cellular mechanisms of cellular degeneration and suggests that S-cones may be more sensitive to light-induced retinal toxicity enhanced by the taurine depletion

    Superior cervical ganglion regenerating axons through peripheral nerve grafts and reversal of behavioral deficits in hemiparkinsonian rats

    No full text
    The superior cervical ganglion (SCG) has been grafted to the brain of adult rats in an attempt to reverse the parkinsonian syndrome that follows destruction of central dopamine systems. However, the main limitation to this approach is the massive cell death that occurs in the grafted SCG after direct transplantation into the brain. In adult rats, 6-hydroxydopamine (6-OHDA) was stereotactically injected into the right substantia nigra (SN). One month later, dopamine denervation was assessed using the apomorphine-induced rotational test. In rats with a positive test, an autologous peripheral nerve (PN) graft was tunneled from the right cervical region to the ipsilateral parietal cortex. One end of PN graft was sutured to the transected postganglionic branch of the SCG and the other end was inserted into a surgically created cortical cavity. The apomorphine test was repeated at 3 days and again at 1, 3, and 5 months after surgery. The brain, SCG, and PN graft were studied under light and electron microscopy and with the tyrosine hydroxylase immunohistochemical and horseradish peroxidase tracing methods. Three days after grafting, there were no significant differences on the apomorphine test as compared to the preoperative test. Conversely, 1,3, and 5 months after grafting, the number of rotations was reduced by 69% (+/-20.2), 66.6% (+/-17.1), and 72.5% (+/-11.3), respectively. Control rats that received a free PN graft to the brain and underwent section of the postganglionic branch of the SCG did not show significant changes on the apomorphine test after surgery. Histological examination revealed that the PN graft was mostly reinnervated by amyelinic axons of small caliber. Approximately 40% of the SCG neuronal population that normally projects to the postganglionic branch survived axotomy and regenerated the transected axons into the PN graft. Axons arising from the SCG elongated the whole length of the graft, crossed the graft-brain interface and extended into brain regions adjacent to the denervated striatum up to 2037 micrometer from the graft insertion site. This work shows that the ingrowth of catecholamine-regenerating axons from the SCG to dopamine-depleted brain parenchyma significantly reduces behavioral abnormalities in hemiparkinsonian rats. This effect cannot be ascribed either to the brain cavitation or to the PN tissue placement in the brain
    corecore