75 research outputs found

    Non-detection of L-band Line Emission from the Exoplanet HD189733b

    Get PDF
    We attempt to confirm bright non-local thermodynamic equilibrium (non-LTE) emission from the exoplanet HD 189733b at 3.25 Ī¼m, as recently reported by Swain et al. based on observations at low spectral resolving power (Ī»/Ī“Ī» ā‰ˆ 30). Non-LTE emission lines from gas in an exoplanet atmosphere will not be significantly broadened by collisions, so the measured emission intensity per resolution element must be substantially brighter when observed at high spectral resolving power. We observed the planet before, during, and after a secondary eclipse event at a resolving power Ī»/Ī“Ī» = 27, 000 using the NIRSPEC spectrometer on the Keck II telescope. Our spectra cover a spectral window near the peak found by Swain et al., and we compare emission cases that could account for the magnitude and wavelength dependence of the Swain et al. result with our final spectral residuals. To model the expected line emission, we use a general non-equilibrium formulation to synthesize emission features from all plausible molecules that emit in this spectral region. In every case, we detect no line emission to a high degree of confidence. After considering possible explanations for the Swain et al. results and the disparity with our own data, we conclude that an astrophysical source for the putative non-LTE emission is unlikely. We note that the wavelength dependence of the signal seen by Swain et al. closely matches the 2Ī½_2 band of water vapor at 300 K, and we suggest that an imperfect correction for telluric water is the source of the feature claimed by Swain et al

    The Volatile Composition of the Split Ecliptic comet 73P/Schwassmann-Wachmann 3: A Comparison of Fragments C and B

    Get PDF
    The composition of fragments C and B of the Jupiter-family comet 73P/Schwassmann-Wachmann 3 (SW3) was investigated in early April of 2006 at IR wavelengths using high-dispersion echelle spectroscopy. Both fragments were depleted in ethane, and C was depleted in most forms of volatile carbon. In particular, fragment C shows a severe depletion of CH_(3)OH but a "normal" abundance of HCN (which has a similar volatility). Thermal processing is a possible explanation, but since fragment B is perhaps sublimating fresher material because of the frequent outbursts and fragmentation, the observed depletions might have cosmogonic implications. The chemistry of the volatile ices in SW3, like in the Oort Cloud comet C/1999 S4 (LINEAR), may be associated with sublimation of icy mantles from precometary grains followed by subsequent gas-phase chemistry and recondensation

    Highly Depleted Ethane and Slightly Depleted Methanol in Comet 21P/Giacobini-Zinner: Application of Empirical g-Factors for CH3OH Near 50K

    Get PDF
    We report high resolution (lambda/delta lambda approximately 24,000) observations of Comet 21 P/Giacobini-Zinner (21P) between approximately 2.85 -- 3.54 micrometers, obtained with NIRSPEC at Keck 2 on UT 2005 June 03 (R(sub h) = 1.12 AU, delta = 1.45 AU). These simultaneously sampled multiple emissions from the v7 band of C2H6 and the v2 and v3 bands of CH3OH, together with several hot bands of H2O, permitting a direct measure of parent volatile abundances in 21P. Our spectra reveal highly depleted C2H6 (0.13-0.14 percent relative to H2O) and CH3OH/C2H6 approximately 10, consistent with previously published abundances from observations in the IR [1,2] and millimeter sub-mm (reporting CH3OH/H2O [3]) during its previous apparition in 1998. We observed similarly high CH3OH/C2H6, and also similar rotational temperature to that measured for 21 P, in Comet 8P/Tuttle [4,5]. We used our (higher signal-to-noise) NIRSPEC observations of 8P to produce effective (empirical) CH3OH g-factors for several lines in the v2 band. These will be presented together with interpretation of our results, including constraints on the spin temperature of water. We acknowledge support from the NASA Planetary Atmospheres, Planetary Astronomy, and Astrobiology Programs and from the NSF Astronomy and Astrophysics Research Grants Program

    Planetary Spectrum Generator: an accurate online radiative transfer suite for atmospheres, comets, small bodies and exoplanets

    Full text link
    We have developed an online radiative-transfer suite (https://psg.gsfc.nasa.gov) applicable to a broad range of planetary objects (e.g., planets, moons, comets, asteroids, TNOs, KBOs, exoplanets). The Planetary Spectrum Generator (PSG) can synthesize planetary spectra (atmospheres and surfaces) for a broad range of wavelengths (UV/Vis/near-IR/IR/far-IR/THz/sub-mm/Radio) from any observatory (e.g., JWST, ALMA, Keck, SOFIA), any orbiter (e.g., ExoMars, Juno), or any lander (e.g., MSL). This is achieved by combining several state-of-the-art radiative transfer models, spectroscopic databases and planetary databases (i.e., climatological and orbital). PSG has a 3D (three-dimensional) orbital calculator for most bodies in the solar system, and all confirmed exoplanets, while the radiative-transfer models can ingest billions of spectral signatures for hundreds of species from several spectroscopic repositories. It integrates the latest radiative-transfer and scattering methods in order to compute high resolution spectra via line-by-line calculations, and utilizes the efficient correlated-k method at moderate resolutions, while for computing cometary spectra, PSG handles non-LTE and LTE excitation processes. PSG includes a realistic noise calculator that integrates several telescope / instrument configurations (e.g., interferometry, coronagraphs) and detector technologies (e.g., CCD, heterodyne detectors, bolometers). Such an integration of advanced spectroscopic methods into an online tool can greatly serve the planetary community, ultimately enabling the retrieval of planetary parameters from remote sensing data, efficient mission planning strategies, interpretation of current and future planetary data, calibration of spectroscopic data, and development of new instrument/spacecraft concepts.Comment: Journal of Quantitative Spectroscopy and Radiative Transfer, submitte

    IRCS/Subaru Observations of Water in the Inner Coma of Comet 73P-B/Schwassmann-Wachmann 3: Spatially Resolved Rotational Temperatures and Ortho-Para Ratios

    Full text link
    Comet 73P-B/Schwassmann-Wachmann 3 was observed with IRCS/Subaru at geocentric distance of 0.074 AU on UT 10 May 2006. Multiple H2O emission lines were detected in non-resonant fluorescence near 2.9 microns. No significant variation in total H2O production rate was found during the (3 hour) duration of our observations. H2O rotational temperatures and ortho-to-para abundance ratios were measured for several positions in the coma. The temperatures extracted from two different time intervals show very similar spatial distributions. For both, the rotational temperature decreased from ~110 K to ~90 K as the projected distance from the nucleus increased from ~5 to ~30 km. We see no evidence for OPR change in the coma. The H2O ortho-para ratio is consistent with the statistical equilibrium value (3.0) for all spatially resolved measurements. This implies a nuclear spin temperature higher than ~ 45 K.Comment: accepted for Icaru

    High-Resolution Infrared Spectroscopic Measurements of Comet 2PlEncke: Unusual Organic Composition and Low Rotational Temperatures

    Get PDF
    We present high-resolution infrared spectroscopic measurements of the ecliptic comet 2P/Encke, observed on 4-6 Nov. 2003 during its close approach to the Earth, using the Near Infrared Echelle Spectrograph on the Keck II telescope. We present flux-calibrated spectra, production rates, and mixing ratios for H2O, CH3OH, HCN, H2CO, C2H2, C2H6, CH4 and CO. Comet 2P/Encke is a dynamical end-member among comets because of its short period of 3.3 years. Relative to "organics-normal" comets, we determined that 2PlEncke is depleted in HCN, H2CO, C2H2, C2H6, CH4 and CO, but it is enriched in CH3OH. We compared mixing ratios of these organic species measured on separate dates, and we see no evidence of macroscopic chemical heterogeneity in the nucleus of 2P/Encke, however, this conclusion is limited by sparse temporal sampling. The depleted abundances of most measured species suggest that 2P/Encke may have formed closer to the young Sun, before its insertion to the Kuiper belt, compared with "organics-normal" comets - as was previously suggested for other depleted comets (e.g. C/1999 S4 (LINEAR)). We measured very low rotational temperatures of 20 - 30 K for H2O, CH3OH and HCN in the near nucleus region of 2P/Encke, which correlate with one of the lowest cometary gas production rates (approx. 2.6 x 10(exp 27) molecules/s) measured thus far in the infrared. This suggests that we are seeing the effects of more efficient radiative cooling, insufficient collisional excitation, and/or inefficient heating by fast H-atoms (and icy grains) in the observed region of the coma. Its extremely short orbital period, very low gas production rate, and classification as an ecliptic comet, make 2PlEncke an important addition to our growing database, and contribute significantly to the establishment of a chemical taxonomy of comets

    A Search for Variation in the H_2O Ortho-Para Ratio and Rotational Temperature in the Inner Coma of Comet C/2004 Q2 (Machholz)

    Get PDF
    We present spatially resolved measurements of the rotational temperature and ortho-para ratio for H_2O in the inner coma of the Oort Cloud comet C/2004 Q2 (Machholz). Our results are based on direct simultaneous detections of ortho-H_2O and para-H_2O via "hot-band" fluorescence near 2.9 Ī¼m. We find a well-defined decline in rotational temperature with increasing nucleocentric distance (up to ~1000 km). The ortho-para ratio remains constant (within stochastic uncertainty) with increasing nucleocentric distance and is close to the statistical equilibrium value of 3.0 (2.86 Ā± 0.06 [0.17], including, respectively, stochastic [systematic] uncertainty), resulting in spin temperature T_(spin) ā‰„ 34 K. We compare the present results with those reported for other comets and discuss the difficulties in interpreting spin temperatures deduced from measured ortho-para ratios. Improved understanding of the special conditions that enable nuclear spin conversion would test the extent to which derived spin temperatures reflect the formative history or the processing record of cometary ices
    • ā€¦
    corecore