35 research outputs found

    The Mineralocorticoid Agonist Fludrocortisone Promotes Survival and Proliferation of Adult Hippocampal Progenitors

    Get PDF
    Glucocorticoid receptor (GR) activation has been shown to reduce adult hippocampal progenitor cell proliferation and neurogenesis. By contrast, mineralocorticoid receptor (MR) signaling is associated with neuronal survival in the dentate gyrus of the hippocampus, and impairment of hippocampal MR has been linked to pathological conditions, such as depression or neurodegenerative disorders. Here, we aimed to further clarify the protective role of MR in adult hippocampal neurons by studying the survival and proliferative effects of the highly potent MR agonist fludrocortisone (Fludro) in adult rat hippocampal progenitor cells (AHPs), along with the associated signaling mechanisms. Fludro, which upregulated MR but not GR expression, increased survival and proliferation and prevented apoptosis in AHPs cultured in growth factor-deprived medium. These effects were blunted by the MR antagonist spironolactone and by high doses of the GR agonist dexamethasone. Moreover, they involved signaling through cAMP/protein kinase A (PKA)/cAMP response element-binding protein, phosphoinositide 3-kinase (PI3K)/Akt and its downstream targets glycogen synthase kinase-3β (GSK-3β) and mammalian target of rapamycin. Furthermore, Fludro attenuated the detrimental effects of amyloid-β peptide 1–42 (Aβ(1–42)) on cell survival, proliferation, and apoptosis in AHPs, and increased the phosphorylation of both PI3K/Akt and GSK-3β, which was reduced by Aβ(1–42). Finally, Fludro blocked Aβ(1–42)-induced hyperphosphorylation of Tau protein, which is a main feature of Alzheimer’s disease. Overall, these results are the first to show the protective and proliferative role of Fludro in AHPs, suggesting the potential therapeutic importance of targeting MR for increasing hippocampal neurogenesis and for treating neurodegenerative diseases

    Growth hormone-releasing hormone attenuates cardiac hypertrophy and improves heart function in pressure overload-induced heart failure

    Get PDF
    It has been shown that growth hormone-releasing hormone (GHRH) reduces cardiomyocyte (CM) apoptosis, prevents ischemia/reperfusion injury, and improves cardiac function in ischemic rat hearts. However, it is still not known whether GHRH would be beneficial for life-threatening pathological conditions, like cardiac hypertrophy and heart failure (HF). Thus, we tested the myocardial therapeutic potential of GHRH stimulation in vitro and in vivo, using GHRH or its agonistic analog MR-409. We show that in vitro, GHRH(1-44)NH2attenuates phenylephrine-induced hypertrophy in H9c2 cardiac cells, adult rat ventricular myocytes, and human induced pluripotent stem cell-derived CMs, decreasing expression of hypertrophic genes and regulating hypertrophic pathways. Underlying mechanisms included blockade of Gq signaling and its downstream components phospholipase Cβ, protein kinase Ce, calcineurin, and phospholamban. The receptor-dependent effects of GHRH also involved activation of Gαsand cAMP/PKA, and inhibition of increase in exchange protein directly activated by cAMP1 (Epac1). In vivo, MR-409 mitigated cardiac hypertrophy in mice subjected to transverse aortic constriction and improved cardiac function. Moreover, CMs isolated from transverse aortic constriction mice treated with MR-409 showed improved contractility and reversal of sarcolemmal structure. Overall, these results identify GHRH as an antihypertrophic regulator, underlying its therapeutic potential for HF, and suggest possible beneficial use of its analogs for treatment of pathological cardiac hypertrophy

    Efficacy and safety of glecaprevir/pibrentasvir in treatment-naïve adults with chronic hepatitis C virus genotypes 1–6 in Brazil

    Get PDF
    Introduction and objectives: Glecaprevir/pibrentasvir is a highly effective and well tolerated treatment for hepatitis C infection. Brazilian patients were not included in the original development studies for glecaprevir/pibrentasvir. This study aimed to assess safety and efficacy of glecaprevir/pibrentasvir in treatment-naïve Brazilian adults without cirrhosis or with compensated cirrhosis. Patients and methods: EXPEDITION-3 was a Phase 3, open-label, multicenter study in treatment-naïve Brazilian adults with hepatitis C infection genotype 1–6. Patients without cirrhosis (F2 or F3) or with compensated cirrhosis (F4) received 8 or 12 weeks of glecaprevir/pibrentasvir, respectively. The primary efficacy endpoint was the rate of sustained virologic response at post-treatment Week 12. Secondary endpoints were on-treatment virologic failure and relapse rates. Baseline polymorphisms were assessed in NS3 and NS5A. Adverse events and laboratory abnormalities were monitored. Results: 100 patients were enrolled, 75 received 8 weeks of treatment and 25 received 12 weeks; all patients completed treatment. Overall sustained virologic response at post-treatment Week 12 rate was high (98.0%; 98/100; 95% confidence interval: 93.0–99.4) and remained high regardless of baseline viral or host factors, including demographics, hepatitis C virus RNA levels, polymorphisms in NS3 and/or NS5A, genotype, and relevant comorbidities. 55% of patients reported ≥1 adverse event, the most common beingheadache (18.0%). Four patients reported serious adverse events; none were considered drug related orled to study drug discontinuation. No hepatic decompensations were observed.Conclusions: Glecaprevir/pibrentasvir was effective and well tolerated in treatment-naïve Brazilianpatients with hepatitis C infection without cirrhosis and with compensated cirrhosis
    corecore