3 research outputs found

    Cross-linking of the DNA repair protein O6-alkylguanine DNA alkyltransferase to DNA in the presence of cisplatin

    No full text
    © 20201,1,2,2-cis-diamminedichloroplatinum (II) (cisplatin) is a chemotherapeutic agent widely used in the clinic to treat various cancers. The antitumor activity of cisplatin is generally attributed to its ability to form intrastrand and interstrand DNA-DNA cross-links via sequential platination of two nucleophilic sites within the DNA duplex. However, cisplatin also induces DNA- protein lesions (DPCs) that may contribute to its biological effects due to their ability to block DNA replication and transcription. We previously reported that over 250 nuclear proteins including high mobility group proteins, histone proteins, and elongation factors formed DPCs in human HT1080 cells treated with cisplatin (Ming et al. Chem. Res. Toxicol. 2017, 30, 980–995). Interestingly, cisplatin-induced DNA-protein conjugates were reversed upon heating, by an unknown mechanism. In the present work, DNA repair protein O6-alkylguanine DNA alkyltransferase (AGT) was used as a model to investigate the molecular details of cisplatin-mediated DNA-protein cross-linking and to establish the mechanism of their reversal. We found that AGT is readily cross-linked to DNA in the presence of cisplatin. HPLC-ESI+-MS/MS sequencing of tryptic peptides originating from dG-Pt-AGT complexes revealed that the cross-linking occurred at six sites within this protein including Glu110, Lys125, Cys145, His146, Arg147, and Cys150. Cisplatin-induced Lys-Gua cross-links (1,1-cis-diammine-2-(5-amino-5-carboxypentyl)amino-2-(2'-deoxyguanosine-7-yl)-platinum(II) (dG-Pt-Lys) were detected by HPLC-ESI+-MS/MS of total digests of modified protein in comparison with the corresponding authentic standard. Upon heating, dG-Pt-AGT complexes were subject to platination migration from protein to DNA, forming cis-[Pt(NH3)2{d(GpG)}] cross-links which were detected by HPLC-ESI+-MS/MS. Our results provide a new insight into the mechanism of cisplatin-mediated DNA-protein cross-linking and their dynamic equilibrium with the corresponding DNA-DNA lesions11Nsciescopu

    In Vivo Identification of Adducts from the New Hypoxia-Activated Prodrug CP-506 Using DNA Adductomics

    No full text
    Many chemotherapeutic drugs exert their cytotoxicity through the formation of DNA modifications (adducts), which interfere with DNA replication, an overactive process in rapidly dividing cancer cells. Side effects from the therapy are common, however, because these drugs also affect rapidly dividing noncancerous cells. Hypoxia-activated prodrugs (HAPs) have been developed to reduce these side effects as they preferentially activate in hypoxic environments, a hallmark of solid tumors. CP-506 is a newly developed DNA-alkylating HAP designed to exert strong activity under hypoxia. The resulting CP-506-DNA adducts can be used to elucidate the cellular and molecular effects of CP-506 and its selectivity toward hypoxic conditions. In this study, we characterize the profile of adducts resulting from the reaction of CP-506 and its metabolites CP-506H and CP-506M with DNA. A total of 39 putative DNA adducts were detected in vitro using our high-resolution/accurate-mass (HRAM) liquid chromatography tandem mass spectrometry (LC-MS3) adductomics approach. Validation of these results was achieved using a novel strategy involving 15N-labeled DNA. A targeted MS/MS approach was then developed for the detection of the 39 DNA adducts in five cancer cell lines treated with CP-506 under normoxic and hypoxic conditions to evaluate the selectivity toward hypoxia. Out of the 39 DNA adducts initially identified, 15 were detected, with more adducts observed from the two reactive metabolites and in cancer cells treated under hypoxia. The presence of these adducts was then monitored in xenograft mouse models bearing MDA-MB-231, BT-474, or DMS114 tumors treated with CP-506, and a relative quantitation strategy was used to compare the adduct levels across samples. Eight adducts were detected in all xenograft models, and MDA-MB-231 showed the highest adduct levels. These results suggest that CP-506-DNA adducts can be used to better understand the mechanism of action and monitor the efficacy of CP-506 in vivo, as well as highlight a new role of DNA adductomics in supporting the clinical development of DNA-alkylating drugs

    In Vivo Identification of Adducts from the New Hypoxia-Activated Prodrug CP-506 Using DNA Adductomics

    No full text
    Many chemotherapeutic drugs exert their cytotoxicity through the formation of DNA modifications (adducts), which interfere with DNA replication, an overactive process in rapidly dividing cancer cells. Side effects from the therapy are common, however, because these drugs also affect rapidly dividing noncancerous cells. Hypoxia-activated prodrugs (HAPs) have been developed to reduce these side effects as they preferentially activate in hypoxic environments, a hallmark of solid tumors. CP-506 is a newly developed DNA-alkylating HAP designed to exert strong activity under hypoxia. The resulting CP-506-DNA adducts can be used to elucidate the cellular and molecular effects of CP-506 and its selectivity toward hypoxic conditions. In this study, we characterize the profile of adducts resulting from the reaction of CP-506 and its metabolites CP-506H and CP-506M with DNA. A total of 39 putative DNA adducts were detected in vitro using our high-resolution/accurate-mass (HRAM) liquid chromatography tandem mass spectrometry (LC-MS3) adductomics approach. Validation of these results was achieved using a novel strategy involving 15N-labeled DNA. A targeted MS/MS approach was then developed for the detection of the 39 DNA adducts in five cancer cell lines treated with CP-506 under normoxic and hypoxic conditions to evaluate the selectivity toward hypoxia. Out of the 39 DNA adducts initially identified, 15 were detected, with more adducts observed from the two reactive metabolites and in cancer cells treated under hypoxia. The presence of these adducts was then monitored in xenograft mouse models bearing MDA-MB-231, BT-474, or DMS114 tumors treated with CP-506, and a relative quantitation strategy was used to compare the adduct levels across samples. Eight adducts were detected in all xenograft models, and MDA-MB-231 showed the highest adduct levels. These results suggest that CP-506-DNA adducts can be used to better understand the mechanism of action and monitor the efficacy of CP-506 in vivo, as well as highlight a new role of DNA adductomics in supporting the clinical development of DNA-alkylating drugs
    corecore