3,438 research outputs found

    Potential energy topology and relaxation processes in a model glass

    Full text link
    We use computer simulation to investigate the topology of the potential energy V({R})V(\{{\bf R}\}) and to search for doublewell potential's (DWP) in a model glass . By a sequence of Newtonian and dissipative dynamics we find different minima of V({R})V(\{{\bf R}\}) and the energy profile along the least action paths joining them. At variance with previous suggestions, we find that the parameters describing the DWP's are correlated among each others. Moreover, the trajectory of the system in the 3NN-d configurational phase space follows a quasi-1-d manifold. The motion parallel to the path is characterized by jumps between minima, and is nearly uncorrelated from the orthogonal, harmonic, dynamics.Comment: 4 pages, RevTex, 4 PostScript figure

    Relaxation processes in harmonic glasses?

    Full text link
    A relaxation process, with the associated phenomenology of sound attenuation and sound velocity dispersion, is found in a simulated harmonic Lennard-Jones glass. We propose to identify this process with the so called microscopic (or instantaneous) relaxation process observed in real glasses and supercooled liquids. A model based on the memory function approach accounts for the observation, and allows to relate to each others: 1) the characteristic time and strength of this process, 2) the low frequency limit of the dynamic structure factor of the glass, and 3) the high frequency sound attenuation coefficient, with its observed quadratic dependence on the momentum transfer.Comment: 11 pages, 3 figure

    Frustration and sound attenuation in structural glasses

    Full text link
    Three classes of harmonic disorder systems (Lennard-Jones like glasses, percolators above threshold, and spring disordered lattices) have been numerically investigated in order to clarify the effect of different types of disorder on the mechanism of high frequency sound attenuation. We introduce the concept of frustration in structural glasses as a measure of the internal stress, and find a strong correlation between the degree of frustration and the exponent alpha that characterizes the momentum dependence of the sound attenuation Gamma(Q)Gamma(Q)\simeqQαQ^\alpha. In particular, alpha decreases from about d+1 in low-frustration systems (where d is the spectral dimension), to about 2 for high frustration systems like the realistic glasses examined.Comment: Revtex, 4 pages including 4 figure

    Connected Network of Minima as a Model Glass: Long Time Dynamics

    Full text link
    A simple model to investigate the long time dynamics of glass-formers is presented and applied to study a Lennard-Jones system in supercooled and glassy phases. According to our model, the point representing the system in the configurational phase space performs harmonic vibrations around (and activated jumps between) minima pertaining to a connected network. Exploiting the model, in agreement with the experimental results, we find evidence for: i) stretched relaxational dynamics; ii) a strong T-dependence of the stretching parameter; iii) breakdown of the Stokes-Einstein law.Comment: 4 pages (Latex), 4 eps figure

    The Raman coupling function in amorphous silica and the nature of the long wavelength excitations in disordered systems

    Full text link
    New Raman and incoherent neutron scattering data at various temperatures and molecular dynamic simulations in amorphous silica, are compared to obtain the Raman coupling coefficient C(ω)C(\omega) and, in particular, its low frequency limit. This study indicates that in the ω0\omega \to 0 limit C(ω)C(\omega) extrapolates to a non vanishing value, giving important indications on the characteristics of the vibrational modes in disordered materials; in particular our results indicate that even in the limit of very long wavelength the local disorder implies non-regular local atomic displacements.Comment: Revtex, 4 ps figure

    Elastic constant dishomogeneity and Q2Q^2 dependence of the broadening of the dynamical structure factor in disordered systems

    Full text link
    We propose an explanation for the quadratic dependence on the momentum QQ, of the broadening of the acoustic excitation peak recently found in the study of the dynamic structure factor of many real and simulated glasses. We ascribe the observed Q2Q^2 law to the spatial fluctuations of the local wavelength of the collective vibrational modes, in turn produced by the dishomegeneity of the inter-particle elastic constants. This explanation is analitically shown to hold for 1-dimensional disordered chains and satisfatorily numerically tested in both 1 and 3 dimensions.Comment: 4 pages, RevTeX, 5 postscript figure

    Potential Energy Landscape and Long Time Dynamics in a Simple Model Glass

    Full text link
    We analyze the properties of a Lennard-Jones system at the level of the potential energy landscape. After an exhaustive investigation of the topological features of the landscape of the systems, obtained studying small size sample, we describe the dynamics of the systems in the multi-dimensional configurational space by a simple model. This consider the configurational space as a connected network of minima where the dynamics proceeds by jumps described by an appropriate master equation. Using this model we are able to reproduce the long time dynamics and the low temperature regime. We investigate both the equilibrium regime and the off-equilibrium one, finding those typical glassy behavior usually observed in the experiments such as: {\it i)} stretched exponential relaxation, {\it ii)} temperature-dependent stretching parameter, {\it iii)} breakdown of the Stokes-Einstein relation, and {\it iv)} appearance of a critical temperature below which one observes deviation from the fluctuation-dissipation relation as consequence of the lack of equilibrium in the system.Comment: 11 pages (Latex), 9 ps figure

    Evidence of short time dynamical correlations in simple liquids

    Full text link
    We report a molecular dynamics (MD) study of the collective dynamics of a simple monatomic liquid -interacting through a two body potential that mimics that of lithium- across the liquid-glass transition. In the glassy phase we find evidences of a fast relaxation process similar to that recently found in Lennard-Jones glasses. The origin of this process is ascribed to the topological disorder, i.e. to the dephasing of the different momentum QQ Fourier components of the actual normal modes of vibration of the disordered structure. More important, we find that the fast relaxation persists in the liquid phase with almost no temperature dependence of its characteristic parameters (strength and relaxation time). We conclude, therefore, that in the liquid phase well above the melting point, at variance with the usual assumption of {\it un-correlated} binary collisions, the short time particles motion is strongly {\it correlated} and can be described via a normal mode expansion of the atomic dynamics.Comment: 7 pages, 7 .eps figs. To appear in Phys. Rev.
    corecore