830 research outputs found

    Detection of [OI] 6300 and Other Diagnostic Emission Lines in the Diffuse Ionized Gas of M33 with Gemini-North

    Get PDF
    We present spectroscopic observations of diffuse ionized gas (DIG) in M33 near the HII region NGC 604. We present the first detection of [OI] 6300 in the DIG of M33, one of the critical lines for distinguishing photo- from shock ionization models. We measure [OI]/Ha in the range of 0.04 to 0.10 and an increase in this ratio with decreasing emission measure. Our measurements of [SII]/Ha and [NII]/Ha also rise with decreasing emission measure, while our [OIII]/Hb measurements remain fairly constant. We have one tentative detection of He I in the region of brightest emission measure, with a ratio of He I/Ha = 0.033 +- 0.019, indicating that the helium is at least partially ionized. We compare our observed emission line ratios to photoionization models and find that field star ionization models do not fit our data well. Leaky HII region models are consistent with our data, without the need to invoke additional ionization mechanisms to fit our [OI] or [OIII] measurements. The closest large HII region is NGC 604 and is therefore a likely candidate for the source of the ionizing photons for the gas in this region.Comment: 12 pages, 4 figures, accepted by ApJ

    HeI in the central Giant HII Region of NGC 5253. A 2D observational approach to collisional and radiative transfer effects

    Full text link
    ABRIDGED: NGC5253 is an ideal laboratory for detailed studies of starburst galaxies. We present for the first time in a starburst galaxy a 2D study of the spatial behavior of collisional and radiative transfer effects in He^+. The HeI lines are analysed based on data obtained with FLAMES and GMOS. Collisional effects are negligible for transitions in the singlet cascade while relatively important for those in the triplet cascade. In particular, they can contribute up to 20% of the flux in the HeIl7065 line. Radiative transfer effects are important over an extended and circular area of 30pc in diameter centered at the Super Star Clusters. HeI abundance, y^+, has been mapped using extinction corrected fluxes of six HeI lines, realistic assumptions for T_e, n_e, and the stellar absorption equivalent width as well as the most recent emissivities. We found a mean of 10^3 y^+ ~80.3 over the mapped area. The relation between the excitation and the total helium abundance, y_tot, is consistent with no abundance gradient. Uncertainties in the derivation of He abundances are dominated by the adopted assumptions. We illustrated the difficulty of detecting a putative He enrichment due to the presence of Wolf-Rayet stars in the main GHIIR. Data are marginally consistent with an excess in the N/He ratio in the N enriched area of the order of both, the atmospheric N/He ratios in WR stars and the uncertainties estimated for the N/He ratios.Comment: Accepted in Astronomy and Astrophysics; the emissivities presented in the Corrigendum, Porter et al. 2013, arXiv:1303.5115, have been include

    The Spatial Distribution of Atomic Carbon Emission in the Giant Molecular Cloud NGC 604-2

    Full text link
    We have mapped a giant molecular cloud in the giant HII region NGC 604 in M33 in the 492 GHz ^3P_1 -- ^3P_0 transition of neutral atomic carbon using the James Clerk Maxwell Telescope. We find the distribution of the [CI] emission to be asymmetric with respect to the CO J=1--0 emission, with the peak of the [CI] emission offset towards the direction of the center of the HII region. In addition, the line ratio I_{[CI]}/I_{CO} is highest (~ 0.2) facing the HII region and lowest (< 0.1) away from it. These asymmetries indicate an edge-on morphology where the [CI] emission is strongest on the side of the cloud facing the center of the HII region, and not detected at all on the opposite side This suggests that the sources of the incident flux creating C from the dissociation of CO are the massive stars of the HII region. The lowest line ratios are similar to what is observed in Galactic molecular clouds, while the highest are similar to starburst galaxies and other regions of intense star formation. The column density ratio, N(C)/N(H_2) is a few times 10^{-6}, in general agreement with models of photodissociation regions.Comment: Accepted for publication in ApJ. 8 pages, 5 figures, 3 table

    Carbon Stars and other Luminous Stellar Populations in M33

    Full text link
    The M33 galaxy is a nearby, relatively metal-poor, late-type spiral. Its proximity and almost face-on inclination means that it projects over a large area on the sky, making it an ideal candidate for wide-field CCD mosaic imaging. Photometry was obtained for more than 10^6 stars covering a 74' x 56' field centered on M33. Main sequence (MS), supergiant branch (SGB), red giant branch (RGB) and asymptotic giant branch (AGB) populations are identified and classified based on broad-band V and I photometry. Narrow-band filters are used to measure spectral features allowing the AGB population to be further divided into C and M-star types. The galactic structure of M33 is examined using star counts, colour-colour and colour-magnitude selected stellar populations. We use the C to M-star ratio to investigate the metallicity gradient in the disk of M33. The C/M-star ratio is found to increase and then flatten with increasing galactocentric radius in agreement with viscous disk formation models. The C-star luminosity function is found to be similar to M31 and the SMC, suggesting that C-stars should be useful distance indicators. The ``spectacular arcs of carbon stars'' in M33 postulated recently by Block et al. (2004) are found in our work to be simply an extension of M33's disk.Comment: 20 pages, 20 figures. Accepted for publication in The Astronomical Journa

    The Evolution of Helium and Hydrogen Ionization Corrections as HII Regions Age

    Get PDF
    Helium and hydrogen recombination lines observed in low-metallicity, extragalactic, HII regions provide the data used to infer the primordial helium mass fraction, Y_P. In deriving abundances from observations, the correction for unseen neutral helium or hydrogen is usually assumed to be absent; i.e., the ionization correction factor is taken to be unity (icf = 1). In a previous paper (VGS), we revisited the question of the icf, confirming a "reverse" ionization correction: icf < 1. In VGS the icf was calculated using more nearly realistic models of inhomogeneous HII regions, suggesting that the published values of Y_P needed to be reduced by an amount of order 0.003. As star clusters age, their stellar spectra evolve and so, too, will their icfs. Here the evolution of the icf is studied, along with that of two, alternate, measures of the "hardness" of the radiation spectrum. The differences between the icf for radiation-bounded and matter-bounded models are also explored, along with the effect on the icf of the He/H ratio (since He and H compete for some of the same ionizing photons). Particular attention is paid to the amount of doubly-ionized helium predicted, leading us to suggest that observations of, or bounds to, He++ may help to discriminate among models of HII regions ionized by starbursts of different ages and spectra. We apply our analysis to the Izotov & Thuan (IT) data set utilizing the radiation softness parameter, the [OIII]/[OI] ratio, and the presence or absence of He++ to find 0.95 < icf < 0.99. This suggests that the IT estimate of the primordial helium abundance should be reduced by Delta-Y = 0.006 +- 0.002, from 0.244 +- 0.002 to 0.238 +- 0.003.Comment: 27 double-spaced pages, 11 figures, 5 equations; revised to match the version accepted for publication in the Ap

    Spectrophotometry of HII Regions, Diffuse Ionized Gas and Supernova Remnants in M31: The Transition from Photo- to Shock-Ionization

    Get PDF
    We present results of KPNO 4-m optical spectroscopy of discrete emission-line nebulae and regions of diffuse ionized gas (DIG) in M31. Long-slit spectra of 16 positions in the NE half of M31 were obtained over a 5-15 kpc range in radial distance from the center of the galaxy. The spectra have been used to confirm 16 supernova remnant candidates from the Braun & Walterbos (1993) catalog. The slits also covered 46 HII regions which show significant differences among the various morphological types (center-brightened, diffuse, rings). Radial gradients in emission-line ratios such as [OIII]/Hβ\beta and [OII]/[OIII] are observed most prominently in the center-brightened HII regions. These line ratio trends are either much weaker or completely absent in the diffuse and ring nebulae. The line ratio gradients previously seen in M31 SNRs (Blair, Kirshner, & Chevalier 1981; 1982) are well reproduced by our new data. The spectra of center-brightened HII regions and SNRs confirm previous determinations of the radial abundance gradient in M31. We use diagnostic diagrams which separate photoionized gas from shock-ionized gas to compare the spectral properties of HII regions, SNRs and DIG. This analysis strengthens earlier claims (Greenawalt, Walterbos, & Braun 1997) that the DIG in the disk of M31 is photoionized by a dilute radiation field.Comment: 45 pages, 9 figures, 7 tables, to appear in the Astronomical Journal (December 1999

    The Effect of Star Formation on Molecular Clouds in Dwarf Irregular Galaxies: IC 10 and NGC 6822

    Full text link
    We have observed the 13CO J=2-1, 12CO J=2-1 and 12CO J=3-2 lines at a few locations in the dwarf irregular galaxies IC 10 and NGC 6822 using the James Clerk Maxwell Telescope. In addition, we report the first detection of the 13CO J=3-2 transition in a Local Group galaxy. These low metallicity environments appear to be porous to UV radiation and allow for more efficient heating of molecular gas by nearby HII regions. The high 12CO J=3-2/J=2-1 ratio in NGC 6822 suggests that the 12CO emission is optically thin in this region. This high line ratio is likely the result of its location inside a large HII region with low metallicity and low gas content. In IC 10 we observe structures on a variety of size scales that all appear to be gravitationally bound. This effect may help explain the rather high star formation rate in IC 10.Comment: 20 pages with 6 ps figures, accepted for publication in The Astrophysical Journa

    Fossil group origins V. The dependence of the luminosity function on the magnitude gap

    Get PDF
    In nature we observe galaxy aggregations that span a wide range of magnitude gaps between the two first-ranked galaxies of a system (Δm12\Delta m_{12}). There are systems with gaps close to zero (e.g., the Coma cluster), and at the other extreme of the distribution, the largest gaps are found among the so-called fossil systems. Fossil and non-fossil systems could have different galaxy populations that should be reflected in their luminosity functions. In this work we study, for the first time, the dependence of the luminosity function parameters on Δm12\Delta m_{12} using data obtained by the fossil group origins (FOGO) project. We constructed a hybrid luminosity function for 102 groups and clusters at z0.25z \le 0.25. We stacked all the individual luminosity functions, dividing them into bins of Δm12\Delta m_{12}, and studied their best-fit Schechter parameters. We additionally computed a relative luminosity function, expressed as a function of the central galaxy luminosity, which boosts our capacity to detect differences, especially at the bright end. We find trends as a function of Δm12\Delta m_{12} at both the bright and faint ends of the luminosity function. In particular, at the bright end, the larger the magnitude gap, the fainter the characteristic magnitude MM^\ast. We also find differences at the faint end. In this region, the larger the gap, the flatter the faint-end slope α\alpha. The differences found at the bright end support a dissipationless, dynamical friction-driven merging model for the growth of the central galaxy in group- and cluster-sized halos. The differences in the faint end cannot be explained by this mechanism. Other processes, such as enhanced tidal disruption due to early infall and/or prevalence of eccentric orbits, may play a role. However, a larger sample of systems with Δm12>1.5\Delta m_{12} > 1.5 is needed to establish the differences at the faint end.Comment: 11 pages, 10 figures, accepted for publication in A&

    Ionization Corrections For Low-Metallicity H II Regions and the Primordial Helium Abundance

    Full text link
    Helium and hydrogen recombination lines observed in low-metallicity, extragalactic H II regions provide the data used to infer the primordial helium mass fraction, Y_P. The ionization corrections for unseen neutral helium (or hydrogen) are usually assumed to be absent; i.e., the ionization correction factor is taken to be unity (icf = 1). In this paper we revisit the question of the icf for H II regions ionized by clusters of young, hot, metal-poor stars. Our key result is that for the H II regions used in the determination of Y_P, there is a ``reverse'' ionization correction: icf < 1. We explore the effect on the icf of more realistic inhomogeneous H II region models and find that for those regions ionized by young stars, with ``hard'' radiation spectra, the icf is reduced further below unity. In Monte Carlos using H II region data from the literature (Izotov and Thuan 1998) we estimate a reduction in the published value of Y_P of order 0.003, which is roughly twice as large as the quoted statistical error in the Y_P determination.Comment: 23 pages, 2 postscript figures; ApJ accepted; minor change
    corecore