28 research outputs found

    Antimicrobial and antioxidant properties of methanol extract, fractions and compounds from the stem bark of Entada abyssinica Stend ex A. Satabie

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to evaluate the antimicrobial and antioxidant activities of the methanol extract, fractions and isolated compounds from <it>Entada abyssinica </it>stem bark, plant used traditionally against gastrointestinal infections.</p> <p>Methods</p> <p>The methanol extract of <it>E. abyssinica </it>stem bark was pre-dissolved in a mixture of methanol and water, and then partitioned between <it>n</it>-hexane, ethyl acetate and <it>n</it>-butanol. The ethyl acetate portion was fractionated by column chromatography and the structures of isolated compounds elucidated by analysis of spectroscopic data and comparison with literature data. Antimicrobial activity was assayed by broth microdilution techniques on bacteria and yeasts. The antioxidant activity was determined by DPPH radical scavenging method.</p> <p>Results</p> <p>Four known compounds [(5<it>S</it>,6<it>R</it>,8a<it>R</it>)-5-(carboxymethyl)-3,4,4a,5,6,7,8,8a-octahydro-5,6,8a-trimethylnaphthalenecarboxylic acid (<b>1</b>), methyl 3,4,5-trihydroxybenzoate (<b>2</b>), benzene-1,2,3-triol (<b>3</b>) and 2,3-dihydroxypropyltriacontanoate (<b>4</b>)] were isolated. Compared to the methanol extract, fractionation increased the antibacterial activities of the <it>n</it>-hexane and ethyl acetate fractions, while the antifungal activities increased in ethyl acetate, <it>n</it>-butanol and aqueous residue fractions. The isolated compounds were generally more active on bacteria (9.7 to 156.2 μg/ml) than yeasts (78.1 to 312.5 μg/ml). Apart from compound <b>1</b>, the three others displayed DPPH<sup>· </sup>scavenging activity (RSa), with RSa<sub>50 </sub>values of 1.45 and 1.60 μg/ml.</p> <p>Conclusion</p> <p>The results obtained from this study support the ethnomedicinal use of <it>E. abyssinica </it>in the treatment of gastrointestinal infections and the isolated compounds could be useful in the standardisation of antimicrobial phytomedicine from this plant.</p

    Analysis of proteins binding to the proximal promoter region of two rat serine protease inhibitor genes.

    No full text
    The three serine protease inhibitor (SPI) rat genes expressed preferentially in liver share considerable structural features and, nonetheless, are transcriptionally regulated in completely different manners, more particularly after hypophysectomy or upon acute inflammation. DNase I footprinting and gel mobility shift analyses of the SPI 2.1 and 2.3 proximal promoter regions reveal the presence of three common protein binding sites (1 to 3, 3' to 5') located immediately upstream from the transcription start site. C/EBP, the liver-enriched factor, specifically interacts with site 1 whereas its related proteins (e.g.; DBP, LAP/NFIL6) most likely recognize sites 2 and 3. Another ubiquitous unidentified factor also binds to site 2. A liver-specific protein dependent on growth hormone, whose binding is competed out by an oligonucleotide reproducing an HNF3 motif, interacts exclusively with site 3. The 42 bp sequence which is found only within the SPI 2.3 promoter interacts with two ubiquitous factors, one of which is related to NF kappa B. Acute inflammation does not significantly affect the protein binding patterns observed with the SPI 2.1 or 2.3 proximal promoter sequences. Our results show an apparent discrepancy between the large magnitude of in vivo changes in SPI gene transcription mediated by hormones and the small alterations detected in vitro, in the DNA-protein interactions on the promoters

    Functional characterization of the promoter of pp63, a gene encoding a natural inhibitor of the insulin receptor tyrosine kinase.

    No full text
    PP63 is a liver specific phosphorylated glycoprotein encoded by a single copy gene, which has the property of inhibiting both autophosphorylation and tyrosine kinase activity of the insulin receptor. In this study, we have analyzed the structure activity relationship of the pp63 gene promoter. Five protein binding sites were found in the proximal 5' flanking region of the gene (-223 to +4). Using oligonucleotides as competitors and purified recombinant C/EBP in footprinting and gel retardation assays, we identified two typical C/EBP sites (X1 and X3) plus a heterogenous, C/EBP-NF1 like site (X5), separated by two classical NF1 binding sites (X2 and X4). C/EBP or the related proteins were predominantly involved in supporting cell-free transcription. Occupancy of the first high affinity C/EBP site conferred almost maximal promoter efficiency, in vitro. However, this pp63 promoter activity remained very low as compared to that in intact hepatocytes. In these cells, occupancy of the first C/EBP (X1) and NF1 (X2) sites was already required for achieving a weak transcriptional activity. The use of the second C/EBP site (X3) strongly enhanced transcription, up to 60-70% of the maximum, whereas occupancy of the two more distal sites (X4 and X5) was necessary to fully activate the promoter. Thus, the strength of the promoter as well as the liver specific expression of pp63 gene appear to result from the interplay of several DNA-protein complexes involving mainly C/EBP and/or related proteins as well as the ubiquitous NF1 factor(s), rather than from the interaction of a more liver specific trans-acting factor with the promoter
    corecore