7 research outputs found

    Synthesis and Antibody Recognition of Cyclic Epitope Peptides, Together with Their Dimer and Conjugated Derivatives Based on Residues 9-22 of Herpes Simplex Virus Type 1 Glycoprotein D

    No full text
    The synthesis of new cyclic peptides comprising the 9-22 epitope (9)LKMADPNRFRGKDL(22) sequence derived from HSV gD-1 is reported. In addition, we describe procedures for the preparation of cyclic peptide dimers and conjugates with an oligotuftsin derivative carrier. The binding of a monoclonal antibody, Mab A16, to the synthesized compounds was determined by enzyme-linked immunosorbent assay. It was demonstrated that cyclization decreased the binding activity of the antibody to the epitope. However, dimerization and conjugation could significantly increase the binding capacity of the cyclic epitope peptides. The attachment site in dimers and conjugates, as well as the topology of the construct, had a significant influence on the antibody recognition, while replacement of Met in position 11 by Nle had no marked effect

    Tuning protein autoinhibition by domain destabilization

    No full text
    Activation of many multi-domain signaling proteins requires rearrangement of autoinhibitory interdomain interactions that occlude activator binding sites. In one model for activation, the major inactive conformation exists in equilibrium with activated-like conformations that can be stabilized by ligand binding or post-translational modifications. The molecular basis for this model is established for the archetypal signaling adapter protein Crk-II by measuring the thermodynamics and kinetics of the equilibrium between autoinhibited and activated-like states using fluorescence and NMR spectroscopies, together with segmental isotopic labeling via expressed protein ligation. The results demonstrate that intramolecular domain-domain interactions both stabilize the autoinhibited state and induce the activated-like conformation. A combination of favorable interdomain interactions and unfavorable intradomain structural changes fine-tunes the population of the activated-like conformation and allows facile response to activators. This mechanism suggests a general strategy for optimization of autoinhibitory interactions of multi-domain proteins
    corecore