19 research outputs found

    A metamorphic inorganic framework that can be switched between eight single-crystalline states

    Get PDF
    The design of highly flexible framework materials requires organic linkers, whereas inorganic materials are more robust but inflexible. Here, by using linkable inorganic rings made up of tungsten oxide (P8W48O184) building blocks, we synthesized an inorganic single crystal material that can undergo at least eight different crystal-to-crystal transformations, with gigantic crystal volume contraction and expansion changes ranging from −2,170 to +1,720 Å3 with no reduction in crystallinity. Not only does this material undergo the largest single crystal-to-single crystal volume transformation thus far reported (to the best of our knowledge), the system also shows conformational flexibility while maintaining robustness over several cycles in the reversible uptake and release of guest molecules switching the crystal between different metamorphic states. This material combines the robustness of inorganic materials with the flexibility of organic frameworks, thereby challenging the notion that flexible materials with robustness are mutually exclusive

    7th Drug hypersensitivity meeting: part two

    Get PDF
    No abstract availabl

    Investigating the Formation of Giant {Pd 72

    No full text

    Towards polyoxometalate-cluster-based nano-electronics

    No full text
    We explore the concept that the incorporation of polyoxometalates (POMs) into complementary metal oxide semiconductor (CMOS) technologies could offer a fundamentally better way to design and engineer new types of data storage devices, due to the enhanced electronic complementarity with SiO2, high redox potentials, and multiple redox states accessible to polyoxometalate clusters. To explore this we constructed a custom-built simulation domain bridge. Connecting DFT, for the quantum mechanical modelling part, and mesoscopic device modelling, confirms the theoretical basis for the proposed advantages of POMs in non-volatile molecular memories (NVMM) or flash-RAM

    Exploring the rotational isomerism in non-classical Wells–Dawson anions {W18X}:: a combined theoretical and mass spectrometry study

    No full text
    We present a combined theoretical and mass spectrometry study of the rotational isomerism of the non-classical Wells–Dawson anions. The structure is larger than the Keggin anion and six geometric isomers are predicted (α, ÎČ, Îł, α*, ÎČ*, Îł*) on the basis of structural arguments. This work explores the geometrical differences between the isomers and evaluates the stability of these unusual clusters based upon the inclusion of the different heteroatoms. We connect the theoretical results with experimental studies by exploring the fragmentation of the parent clusters by electrospray-ionisation mass spectrometry (ESI-MS). Both approaches show a general stability trend that can be postulated as follows: Îł* > ÎČ* > α* > α ≫ ÎČ > Îł where the isomers Îł*, ÎČ* and α are the only anions of this type known to have been synthesised

    Altered chromatin landscape in circulating T follicular helper and regulatory cells following grass pollen subcutaneous and sublingual immunotherapy

    No full text
    BACKGROUND: Allergen-specific immunotherapy (AIT) is a disease-modifying treatment that induces long-term T cell tolerance. OBJECTIVE: To evaluate the role of circulating CXCR5+PD-1+T follicular helper (cTFH) and T follicular regulatory (TFR) cells following grass pollen subcutaneous (SCIT) and sublingual (SLIT) immunotherapy and the accompanying changes in their chromatin landscape. METHODS: Phenotype and function of cTFH cells were initially evaluated in grass pollen-allergics (GPA, n= 28) and non-atopic controls (NAC, n=13) by mathematical algorithms developed to manage high-dimensional data and cell culture, respectively. cTFH and TFR cells were further enumerated in NAC (n=12), GPA (n=14), SCIT (n=10) and SLIT (n=8)-treated groups. Chromatin accessibility in cTFH and TFR cells was assessed by ATAC-seq to investigate epigenetic mechanisms underlying the differences between NAC, GPA, SCIT and SLIT. RESULTS: cTFH cells were shown to be distinct from TH2 and TH2A cell subsets, capable of secreting IL-4 and IL-21. Both cytokines synergistically promoted B cell class switching to IgE and plasma cell differentiation. Grass pollen allergen induced cTFH cell proliferation in GPA but not in NAC (P<.05). cTFH cells were higher in GPA compared to NAC and were lower in SCIT and SLIT (P<.01). Time-dependent induction of IL-4, IL-21 and IL-6 were observed in nasal mucosa following intranasal allergen challenge in GPA but not in SCIT and SLIT groups. TFR and IL-10+ cTFH cells were induced in SCIT and SLIT (all, P<.01). ATAC-seq analyses revealed differentially accessible chromatin regions in all groups. CONCLUSION: For the first time, we showed dysregulation of cTFH cells in GPA compared to NAC, SCIT and SLIT and induction of TFR and IL-10+ cTFH cells following SCIT and SLIT. Changes in the chromatin landscape were observed following AIT in cTFH and TFR cells

    Induction of IL-10-producing type 2 innate lymphoid cells by allergen immunotherapy is associated with clinical response.

    No full text
    The role of innate immune cells in allergen immunotherapy that confers immune tolerance to the sensitizing allergen is unclear. Here, we report a role of interleukin-10-producing type 2 innate lymphoid cells (IL-10+ ILC2s) in modulating grass-pollen allergy. We demonstrate that KLRG1+ but not KLRG1- ILC2 produced IL-10 upon activation with IL-33 and retinoic acid. These cells attenuated Th responses and maintained epithelial cell integrity. IL-10+ KLRG1+ ILC2s were lower in patients with grass-pollen allergy when compared to healthy subjects. In a prospective, double-blind, placebo-controlled trial, we demonstrated that the competence of ILC2 to produce IL-10 was restored in patients who received grass-pollen sublingual immunotherapy. The underpinning mechanisms were associated with the modification of retinol metabolic pathway, cytokine-cytokine receptor interaction, and JAK-STAT signaling pathways in the ILCs. Altogether, our findings underscore the contribution of IL-10+ ILC2s in the disease-modifying effect by allergen immunotherapy

    Design and synthesis of polyoxometalate-framework materials from cluster precursors

    No full text
    corecore