6 research outputs found

    Diversity and evolution of anuran trypanosomes: insights from the study of European species

    No full text
    Abstract Background Amphibian trypanosomes were the first ever described trypanosomatids. Nevertheless, their taxonomy remains entangled because of pleomorphism and high prevalence of mixed infections. Despite the fact that the first species in this group were described in Europe, virtually none of the trypanosomes from European anurans was analyzed using modern molecular methods. Methods In this study, we explored the diversity and phylogeny of trypanosomes in true frogs from Europe using light microscopy and molecular methods. Results A comparison of observed morphotypes with previous descriptions allowed us to reliably identify three Trypanosoma spp., whereas the remaining two strains were considered to represent novel taxa. In all cases, more than one morphotype per blood sample was observed, indicating mixed infections. One hundred and thirty obtained 18S rRNA gene sequences were unambiguously subdivided into five groups, correspondent to the previously recognized or novel taxa of anuran trypanosomes. Conclusions In this work we studied European frog trypanosomes. Even with a relatively moderate number of isolates, we were able to find not only three well-known species, but also two apparently new ones. We revealed that previous assignments of multiple isolates from distant geographical localities to one species based on superficial resemblance were unjustified. Our work also demonstrated a high prevalence of mixed trypanosome infections in frogs and proposed a plausible scenario of evolution of the genus Trypanosoma

    Development of Phytomonas lipae sp. n. (Kinetoplastea: Trypanosomatidae) in the true bug Coreus marginatus (Heteroptera: Coreidae) and insights into the evolution of life cycles in the genus Phytomonas.

    No full text
    Here we described a new trypanosomatid species, Phytomonas lipae, parasitizing the dock bug Coreus marginatus based on axenic culture and in vivo material. Using light and electron microscopy we characterized the development of this flagellate in the intestine, hemolymph and salivary glands of its insect host. The intestinal promastigotes of Phytomonas lipae do not divide and occur only in the anterior part of the midgut. From there they pass into hemolymph, increasing in size, and then to salivary glands, where they actively proliferate without attachment to the host's epithelium and form infective endomastigotes. We conducted molecular phylogenetic analyses based on 18s rRNA, gGAPDH and HSP83 gene sequences, of which the third marker performed the best in terms of resolving phylogenetic relationships within the genus Phytomonas. Our inference demonstrated rather early origin of the lineage comprising the new species, right after that of P. oxycareni, which represents the earliest known branch within the Phytomonas clade. This allowed us to compare the development of P. lipae and three other Phytomonas spp. in their insect hosts and reconstruct the vectorial part of the life cycle of their common ancestor

    If host is refractory, insistent parasite goes berserk: Trypanosomatid Blastocrithidia raabei in the dock bug Coreus marginatus.

    No full text
    Here we characterized the development of the trypanosomatid Blastocrithidia raabei in the dock bug Coreus marginatus using light and electron microscopy. This parasite has been previously reported to occur in the host hemolymph, which is rather typical for dixenous trypanosomatids transmitted to a plant or vertebrate with insect's saliva. In addition, C. marginatus has an unusual organization of the intestine, which makes it refractory to microbial infections: two impassable segments isolate the anterior midgut portion responsible for digestion and absorption from the posterior one containing symbiotic bacteria. Our results refuted the possibility of hemolymph infection, but revealed that the refractory nature of the host provokes very aggressive behavior of the parasite and makes its life cycle more complex, reminiscent of that in some dixenous trypanosomatids. In the pre-barrier midgut portion, the epimastigotes of B. raabei attach to the epithelium and multiply similarly to regular insect trypanosomatids. However, when facing the impassable constricted region, the parasites rampage and either fiercely break through the isolating segments or attack the intestinal epithelium in front of the barrier. The cells of the latter group pass to the basal lamina and accumulate there, causing degradation of the epitheliocytes and thus helping the epimastigotes of the former group to advance posteriorly. In the symbiont-containing post-barrier midgut segment, the parasites either attach to bacterial cells and produce cyst-like amastigotes (CLAs) or infect enterocytes. In the rectum, all epimastigotes attach either to the cuticular lining or to each other and form CLAs. We argue that in addition to the specialized life cycle B. raabei possesses functional cell enhancements important either for the successful passage through the intestinal barriers (enlarged rostrum and well-developed Golgi complex) or as food reserves (vacuoles in the posterior end)
    corecore