8 research outputs found

    Role of plasticity-induced crack closure in fatigue crack growth

    Get PDF
    The premature contact of crack surfaces attributable to the near-tip plastic deformations under cyclic loading, which is commonly referred to as plasticity induced crack closure (PICC), has long been focused as supposedly controlling factor of fatigue crack growth (FCG). Nevertheless, when the plane-strain near-tip constraint is approached, PICC lacks of straightforward evidence, so that its significance in FCG, and even the very existence, remain debatable. To add insights into this matter, large-deformation elastoplastic simulations of plane-strain crack under constant amplitude load cycling at different load ranges and ratios, as well as with an overload, have been performed. Modeling visualizes the Laird-Smith conceptual mechanism of FCG by plastic blunting and re-sharpening. Simulation reproduces the experimental trends of FCG concerning the roles of stress intensity factor range and overload, but PICC has never been detected. Near-tip deformation patterns discard the filling-in a crack with material stretched out of the crack plane in the wake behind the tip as supposed PICC origin. Despite the absence of closure, load-deformation curves appear bent, which raises doubts about the trustworthiness of closure assessment from the compliance variation. This demonstrates ambiguities of PICC as a supposedly intrinsic factor of FCG and, by implication, favors the stresses and strains in front of the crack tip as genuine fatigue drivers

    Plastic zone evolution near a crack tip and its role in environmentally assisted cracking

    Get PDF
    This paper analyzes the effects of crack tip plastic strains and compressive residual stresses, createdby fatigue pre-cracking, on environmentally assisted cracking of pearlitic steel subjected to localized anodicdissolution and hydrogen assisted fracture. In both situations, cyclic crack tip plasticity improves the behavior ofthe steel. In the respective cases, the effects are supposed to be due to accelerated local anodic dissolution ofthe cyclic plastic zone (producing chemical crack blunting) or to the delay of hydrogen entry into the metalcaused by residual compressive stresses, thus increasing the fracture load in aggressive environment

    Detection of Microorganisms Onboard the International Space Station Using an Electronic Nose

    Get PDF
    Abstract We report on the detection of microorganisms onboard the International Space Station (ISS) using an electronic nose we named the E-Nose. The E-Nose, containing an array of ten different metal oxide gas sensors, was trained on Earth to detect the four most abundant microorganisms that are known to exist onboard the ISS. To assess its performance in space, the E-Nose was brought to the ISS and three measurement campaigns were carried out in three different locations inside the ISS during a 5-month mission. At the end of this mission, all investigated locations were wiped with swabs, and the swabs and odor sensor signal data were sent back to Earth for an in-depth analysis in earthbound laboratories. The in-space measurements were compared with an odor database containing four organisms, but a consensus odor could not be identified. Microbiological results could not provide clues to the smell that was measured. The yeast Rhodotorula mucilaginosa was identified in the literature as the most probable candidate for the unknown odor. Further investigations showed that the smell of Rhodotorula mucilaginosa matches very well with the data obtained inside the ISS. Finally, Rhodotorula mucilaginosa DNA was identified in swabs taken from the sleeping cabin of the astronaut, which confirms the assumption that the yeast Rhodotorula mucilaginosa was actually measured in space by the E-Nose

    Hydrogen Assisted Cracking in Pearlitic Steel Rods: The Role of Residual Stresses Generated by Fatigue Precracking

    No full text
    Stress corrosion cracking (SCC) of metals is an issue of major concern in engineering since this phenomenon causes many catastrophic failures of structural components in aggressive environments. SCC is even more harmful under cathodic conditions promoting the phenomenon known as hydrogen assisted cracking (HAC), hydrogen assisted fracture (HAF) or hydrogen embrittlement (HE). A common way to assess the susceptibility of a given material to HAC, HAF or HE is to subject a cracked rod to a constant extension rate tension (CERT) test until it fractures in this harsh environment. This paper analyzes the influence of a residual stress field generated by fatigue precracking on the sample’s posterior susceptibility to HAC. To achieve this goal, numerical simulations were carried out of hydrogen diffusion assisted by the stress field. Firstly, a mechanical simulation of the fatigue precracking was developed for revealing the residual stress field after diverse cyclic loading scenarios and posterior stress field evolution during CERT loading. Afterwards, a simulation of hydrogen diffusion assisted by stress was carried out considering the residual stresses after fatigue and the superposed rising stresses caused by CERT loading. Results reveal the key role of the residual stress field after fatigue precracking in the HAC phenomena in cracked steel rods as well as the beneficial effect of compressive residual stress
    corecore