33 research outputs found

    Унифицированная речеподобная помеха для средств активной защиты речевой информации

    Get PDF
    Рассматривается возможность создания речеподобной помехи для средств виброакустической защиты речевой информации на основе таблиц слогов и слов русского языка. Обосновывается выбор направлений исследований и условий проведения эксперимента: синтез звуковых файлов путем случайной выборки элементов речи из базы данных, исследование спектров синтезированных помех, алгоритм создания помехи типа «речевой хор», исследование автокорреляционных функций синтезированных РП-помех, а также их плотности распределения вероятностей. Показано, что спектральные и статистические характеристики синтезированных речеподобных помех типа «речевой хор» из пяти голосов близки к аналогичным характеристикам реальных речевых сигналов. При этом речевой хор формировался путем усреднения мгновенных значений временных реализаций звуковых файлов. Показано, что спектральная плотность мощности речеподобной помехи типа «речевой хор» практически не изменяется при числе усредняемых «голосов» начиная с пяти. Плотность распределения вероятностей значения речеподобной помехи при увеличении числа голосов в «речевом хоре» приближается к нормальному закону (в отличие от реального речевого сигнала, чья плотность вероятности близка к распределению Лапласа). Оценка автокорреляционной функции показала интервал корреляции в несколько миллисекунд. Проведенные артикуляционные испытания разборчивости речи при использовании синтезированных речеподобных помех с различными отношениями «сигнал/шум» показали возможность снижения интегрального уровня помехи на 12-15 дБ по сравнению с шумоподобной помехой. Построены зависимости словесной разборчивости от интегрального отношения «сигнал/помеха» на основе полиномиальной и кусочно-линейной аппроксимации. Проведена предварительная оценка возможного влияния речеподобных помех на психоэмоциональное состояние человека. Обсуждается направление дальнейших исследований по повышению эффективности алгоритмов формирования речеподобных помех

    Magnetic Nanoparticle Systems for Nanomedicine—A Materials Science Perspective

    Get PDF
    Iron oxide nanoparticles are the basic components of the most promising magneto-responsive systems for nanomedicine, ranging from drug delivery and imaging to hyperthermia cancer treatment, as well as to rapid point-of-care diagnostic systems with magnetic nanoparticles. Advanced synthesis procedures of single- and multi-core iron-oxide nanoparticles with high magnetic moment and well-defined size and shape, being designed to simultaneously fulfill multiple biomedical functionalities, have been thoroughly evaluated. The review summarizes recent results in manufacturing novel magnetic nanoparticle systems, as well as the use of proper characterization methods that are relevant to the magneto-responsive nature, size range, surface chemistry, structuring behavior, and exploitation conditions of magnetic nanosystems. These refer to particle size, size distribution and aggregation characteristics, zeta potential/surface charge, surface coating, functionalization and catalytic activity, morphology (shape, surface area, surface topology, crystallinity), solubility and stability (e.g., solubility in biological fluids, stability on storage), as well as to DC and AC magnetic properties, particle agglomerates formation, and flow behavior under applied magnetic field (magnetorheology)

    SANS contrast variation study of magnetoferritin structure at various iron loading

    Get PDF
    Magnetoferritin, a synthetic derivate of iron storage protein – ferritin, has been synthesized with different iron oxide loading values. Small-angle neutron scattering experiments were applied to study the structure of magnetoferritin solutions using contrast variation method by varying the light to heavy water ratio of the solvent. Higher iron loading leads to increase of the neutron scattering length density of magnetoferritin and also to the increase of the polydispersity of complexes. The formation of the magnetic core and the variation of the protein shell structure upon iron loading are concluded

    Expandable graphite modification by boric acid

    No full text

    Magnetic Nanoparticle Systems for Nanomedicine—A Materials Science Perspective

    Get PDF
    Iron oxide nanoparticles are the basic components of the most promising magneto- responsive systems for nanomedicine, ranging from drug delivery and imaging to hyperthermia cancer treatment, as well as to rapid point-of-care diagnostic systems with magnetic nanoparticles. Advanced synthesis procedures of single- and multi-core iron-oxide nanoparticles with high magnetic moment and well-defined size and shape, being designed to simultaneously fulfill multiple biomedical functionalities, have been thoroughly evaluated. The review summarizes recent results in manufacturing novel magnetic nanoparticle systems, as well as the use of proper characterization methods that are relevant to the magneto-responsive nature, size range, surface chemistry, structuring behavior, and exploitation conditions of magnetic nanosystems. These refer to particle size, size distribution and aggregation characteristics, zeta potential/surface charge, surface coating, functionalization and catalytic activity, morphology (shape, surface area, surface topology, crystallinity), solubility and stability (e.g., solubility in biological fluids, stability on storage), as well as to DC and AC magnetic properties, particle agglomerates formation, and flow behavior under applied magnetic field (magnetorheology)

    The effect of solution pH on the structural stability of magnetoferritin

    No full text
    The structural stability of magnetoferritin, a synthetic analogue of ferritin, at various pH levels is assessed here. The structural and electrical properties of the complexes were determined by small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and zeta potential measurements. At pH 3 − 6 a reduction of electrostatic repulsion on the suspended colloids resulted in aggregation and sedimentation of magnetoferritin. At neutral to slightly alkaline conditions (pH 7–9) the magnetoferritin structure was stable for lower iron loadings. Higher solution pH 10–12 induced destabilization of the protein structure and dissociation of subunits. Increasing the loading factor in the MFer complex leads to decrease of the stability versus pH changes

    Fast-Processable Non-Flammable Phthalonitrile-Modified Novolac/Carbon and Glass Fiber Composites

    No full text
    Phthalonitrile resins (PN) are known for their incredible heat resistance and at the same time poor processability. Common curing cycle of the PN includes dozens hours of heating at temperatures up to 375 °C. This work was aimed at reducing processing time of phthalonitrile resin, and with this purpose, a novolac oligomer with hydroxyl groups fully substituted by phthalonitrile moieties was synthesized with a quantitative yield. Formation of the reaction byproducts was investigated depending on the synthesis conditions. The product was characterized by 1H NMR and FT-IR. Curing of the resins with the addition of different amounts of novolac phenolic as curing agent (25, 50 and 75 wt.%) was studied by rheological and DSC experiments. Based on these data, a curing program was developed for the further thermosets’ investigation: hot-pressing at 220 °C and 1.7 MPa for 20 min. TGA showed the highest thermal stability of the resin with 25 wt.% of novolac (T5% = 430 °C). The post-curing program was developed by the use of DMA with different heating rates and holding for various times at 280 or 300 °C (heating rate 0.5 °C/min). Carbon and glass fiber plastic laminates were fabricated via hot-pressing of prepregs with Tg’s above 300 °C. Microcracks were formed in the CFRP, but void-free GFRP were fabricated and demonstrated superior mechanical properties (ILSS up to 86 MPa; compressive strength up to 620 MPa; flexural strength up to 946 MPa). Finally, flammability tests showed that the composite was extinguished in less than 5 s after the flame source was removed, so the material can be classified as V-0 according to the UL94 ratings. For the first time, fast-curing phthalonitrile prepregs were presented. The hot-pressing cycle of 20 min with 150 min free-standing post-curing yielded composites with the unique properties. The combination of mechanical properties, scale-up suitable fast-processing and inflammability makes the presented materials prospective for applications in the electric vehicle industries, fast train construction and the aerospace industry
    corecore