4 research outputs found

    Catalytic Oxidative 1,2-Shift in 1,1′-Disubstituted Olefins Using Arene(iodo)sulfonic Acid as the Precatalyst and Oxone as the Oxidant

    No full text
    An efficient, catalytic hypervalent iodine-mediated oxidative 1,2-shift of 1,1′-disubstituted olefins is described. This methodology provides concise access to homobenzylic ketones with electron-donating substituents. In the case of cyclic systems, this transformation results in ring-expanded β-benzocycloalkanones, which are useful for further elaboration

    Dyotropic Rearrangements of Fused Tricyclic β‑Lactones: Application to the Synthesis of (−)-Curcumanolide A and (−)-Curcumalactone

    No full text
    Dyotropic rearrangements of fused, tricyclic β-lactones are described that proceed via unprecedented stereospecific, 1,2-acyl migrations delivering bridged, spiro-γ-butyrolactones. A unique example of this dyotropic process involves a fused bis-lactone possessing both β- and δ-lactone moieties which enabled rapid access to the core structures of curcumanolide A and curcumalactone. Our current mechanistic understanding of the latter dyotropic process, based on computational studies, is also described. Other key transformations in the described divergent syntheses of (−)-curcumanolide A and (−)-curcumalactone from a common intermediate (11 and 12 steps from 2-methyl-1,3-cyclopentanedione, respectively), include a catalytic, asymmetric nucleophile (Lewis base)-catalyzed aldol-lactonization (NCAL) leading to a tricyclic β-lactone, a Baeyer–Villiger oxidation in the presence of a β-lactone, and highly facial-selective and stereocomplementary reductions of an intermediate spirocyclic enoate. The described dyotropic rearrangements significantly alter the topology of the starting tricyclic β-lactone, providing access to complex spirocyclic cyclopentyl-γ-lactones and bis-γ-lactones in a single synthetic operation

    Dyotropic Rearrangements of Fused Tricyclic β‑Lactones: Application to the Synthesis of (−)-Curcumanolide A and (−)-Curcumalactone

    No full text
    Dyotropic rearrangements of fused, tricyclic β-lactones are described that proceed via unprecedented stereospecific, 1,2-acyl migrations delivering bridged, spiro-γ-butyrolactones. A unique example of this dyotropic process involves a fused bis-lactone possessing both β- and δ-lactone moieties which enabled rapid access to the core structures of curcumanolide A and curcumalactone. Our current mechanistic understanding of the latter dyotropic process, based on computational studies, is also described. Other key transformations in the described divergent syntheses of (−)-curcumanolide A and (−)-curcumalactone from a common intermediate (11 and 12 steps from 2-methyl-1,3-cyclopentanedione, respectively), include a catalytic, asymmetric nucleophile (Lewis base)-catalyzed aldol-lactonization (NCAL) leading to a tricyclic β-lactone, a Baeyer–Villiger oxidation in the presence of a β-lactone, and highly facial-selective and stereocomplementary reductions of an intermediate spirocyclic enoate. The described dyotropic rearrangements significantly alter the topology of the starting tricyclic β-lactone, providing access to complex spirocyclic cyclopentyl-γ-lactones and bis-γ-lactones in a single synthetic operation

    Development of a Process Route to the FAK/ALK Dual Inhibitor TEV-37440

    No full text
    The development of a scalable route to TEV-37440, a dual inhibitor of focal adhesion kinase (FAK) and anaplastic lymphoma kinase (ALK), is presented. The medicinal chemistry route used to support this target through nomination is reviewed, along with the early process chemistry route to support IND (inversigational new drug) enabling activities within CMC (Chemistry, Manufacturing, and Controls). The identification and development of an improved route that was performed in the pilot plant to supply early phase clinical supplies are discussed. Details surrounding the use of a novel ring expansion, a selective nitration through a para-blocking group strategy, a single-pot amination–hydrogenation, a diastereomeric salt resolution, a through-process step to avoid a hazardous intermediate, and a practical formation of a trihydrochloride dihydrate salt are disclosed
    corecore