51 research outputs found

    On the origin of the histone fold

    Get PDF
    BACKGROUND: Histones organize the genomic DNA of eukaryotes into chromatin. The four core histone subunits consist of two consecutive helix-strand-helix motifs and are interleaved into heterodimers with a unique fold. We have searched for the evolutionary origin of this fold using sequence and structure comparisons, based on the hypothesis that folded proteins evolved by combination of an ancestral set of peptides, the antecedent domain segments. RESULTS: Our results suggest that an antecedent domain segment, corresponding to one helix-strand-helix motif, gave rise divergently to the N-terminal substrate recognition domain of Clp/Hsp100 proteins and to the helical part of the extended ATPase domain found in AAA+ proteins. The histone fold arose subsequently from the latter through a 3D domain-swapping event. To our knowledge, this is the first example of a genetically fixed 3D domain swap that led to the emergence of a protein family with novel properties, establishing domain swapping as a mechanism for protein evolution. CONCLUSION: The helix-strand-helix motif common to these three folds provides support for our theory of an 'ancient peptide world' by demonstrating how an ancestral fragment can give rise to 3 different folds

    Evolutionary Relationships of Microbial Aromatic Prenyltransferases

    Get PDF
    The linkage of isoprenoid and aromatic moieties, catalyzed by aromatic prenyltransferases (PTases), leads to an impressive diversity of primary and secondary metabolites, including important pharmaceuticals and toxins. A few years ago, a hydroxynaphthalene PTase, NphB, featuring a novel ten-stranded ÎČ-barrel fold was identified in Streptomyces sp. strain CL190. This fold, termed the PT-barrel, is formed of five tandem ααÎČÎČ structural repeats and remained exclusive to the NphB family until its recent discovery in the DMATS family of indole PTases. Members of these two families exist only in fungi and bacteria, and all of them appear to catalyze the prenylation of aromatic substrates involved in secondary metabolism. Sequence comparisons using PSI-BLAST do not yield matches between these two families, suggesting that they may have converged upon the same fold independently. However, we now provide evidence for a common ancestry for the NphB and DMATS families of PTases. We also identify sequence repeats that coincide with the structural repeats in proteins belonging to these two families. Therefore we propose that the PT-barrel arose by amplification of an ancestral ααÎČÎČ module. In view of their homology and their similarities in structure and function, we propose to group the NphB and DMATS families together into a single superfamily, the PT-barrel superfamily

    A CTP-Dependent Archaeal Riboflavin Kinase Forms a Bridge in the Evolution of Cradle-Loop Barrels

    Get PDF
    SummaryProteins of the cradle-loop barrel metafold are formed by duplication of a conserved ÎČαÎČ-element, suggesting a common evolutionary origin from an ancestral group of nucleic acid-binding proteins. The basal fold within this metafold, the RIFT barrel, is also found in a wide range of enzymes, whose homologous relationship with the nucleic acid-binding group is unclear. We have characterized a protein family that is intermediate in sequence and structure between the basal group of cradle-loop barrels and one family of RIFT-barrel enzymes, the riboflavin kinases. We report the structure, substrate-binding mode, and catalytic activity for one of these proteins, Methanocaldococcus jannaschii Mj0056, which is an archaeal riboflavin kinase. Mj0056 is unusual in utilizing CTP rather than ATP as the donor nucleotide, and sequence conservation in the relevant residues suggests that this is a general feature of archaeal riboflavin kinases

    Membraneless channels sieve cations in ammonia-oxidizing marine archaea

    Get PDF
    Nitrosopumilus maritimus is an ammonia-oxidizing archaeon that is crucial to the global nitrogen cycle1, 2. A critical step for nitrogen oxidation is the entrapment of ammonium ions from a dilute marine environment at the cell surface and their subsequent channelling to the cell membrane of N. maritimus. Here we elucidate the structure of the molecular machinery responsible for this process, comprising the surface layer (S-layer), using electron cryotomography and subtomogram averaging from cells. We supplemented our in situ structure of the ammonium-binding S-layer array with a single-particle electron cryomicroscopy structure, revealing detailed features of this immunoglobulin-rich and glycan-decorated S-layer. Biochemical analyses showed strong ammonium binding by the cell surface, which was lost after S-layer disassembly. Sensitive bioinformatic analyses identified similar S-layers in many ammonia-oxidizing archaea, with conserved sequence and structural characteristics. Moreover, molecular simulations and structure determination of ammonium-enriched specimens enabled us to examine the cation-binding properties of the S-layer, revealing how it concentrates ammonium ions on its cell-facing side, effectively acting as a multichannel sieve on the cell membrane. This in situ structural study illuminates the biogeochemically essential process of ammonium binding and channelling, common to many marine microorganisms that are fundamental to the nitrogen cycle

    Repeated co-option of HMG-box genes for sex determination in brown algae and animals

    Get PDF
    In many eukaryotes, genetic sex determination is not governed by XX/XY or ZW/ZZ systems but by a specialized region on the poorly studied U (female) or V (male) sex chromosomes. Previous studies have hinted at the existence of a dominant male-sex factor on the V chromosome in brown algae, a group of multicellular eukaryotes distantly related to animals and plants. The nature of this factor has remained elusive. Here, we demonstrate that an HMG-box gene acts as the male-determining factor in brown algae, mirroring the role HMG-box genes play in sex determination in animals. Over a billion-year evolutionary timeline, these lineages have independently co-opted the HMG box for male determination, representing a paradigm for evolution’s ability to recurrently use the same genetic “toolkit” to accomplish similar tasks.</p

    Homology of SMP domains to the TULIP superfamily of lipid-binding proteins provides a structural basis for lipid exchange between ER and mitochondria

    Get PDF
    Mitochondria must uptake some phospholipids from the endoplasmic reticulum (ER) for the biogenesis of their membranes. They convert one of these lipids, phosphatidylserine, to phosphatidylethanolamine, which can be re-exported via the ER to all other cellular membranes. The mechanisms underlying these exchanges between ER and mitochondria are poorly understood. Recently, a complex termed ER–mitochondria encounter structure (ERMES) was shown to be necessary for phospholipid exchange in budding yeast. However, it is unclear whether this complex is merely an inter-organelle tether or also the transporter. ERMES consists of four proteins: Mdm10, Mdm34 (Mmm2), Mdm12 and Mmm1, three of which contain the uncharacterized SMP domain common to a number of eukaryotic membrane-associated proteins. Here, we show that the SMP domain belongs to the TULIP superfamily of lipid/hydrophobic ligand-binding domains comprising members of known structure. This relationship suggests that the SMP domains of the ERMES complex mediate lipid exchange between ER and mitochondria
    • 

    corecore