12 research outputs found

    Additional file 6: of Minnelide effectively eliminates CD133+ side population in pancreatic cancer

    No full text
    IC50 values for triptolide of MIA PaCa-2 and CD133 + and CD133 -  of CSM and 12T groups. (TIF 705 kb

    Additional file 1: Table S1. of Minnelide effectively eliminates CD133+ side population in pancreatic cancer

    No full text
    Expression of stemness genes in CSM and 12 T cells (Fold change in expression over CSM cells). SEM is represented within parenthesis. (DOC 30 kb

    Table1_Diethyldithiocarbamate-ferrous oxide nanoparticles inhibit human and mouse glioblastoma stemness: aldehyde dehydrogenase 1A1 suppression and ferroptosis induction.docx

    No full text
    The development of effective therapy for eradicating glioblastoma stem cells remains a major challenge due to their aggressive growth, chemoresistance and radioresistance which are mainly conferred by aldehyde dehydrogenase (ALDH)1A1. The latter is the main stemness mediator via enhancing signaling pathways of Wnt/β-catenin, phosphatidylinositol 3-kinase/AKT, and hypoxia. Furthermore, ALDH1A1 mediates therapeutic resistance by inactivating drugs, stimulating the expression of drug efflux transporters, and detoxifying reactive radical species, thereby apoptosis arresting. Recent reports disclosed the potent and broad-spectrum anticancer activities of the unique nanocomplexes of diethyldithiocarbamate (DE, ALDH1A1 inhibitor) with ferrous oxide nanoparticles (FeO NPs) mainly conferred by inducing lipid peroxidation-dependent non-apoptotic pathways (iron accumulation-triggered ferroptosis), was reported. Accordingly, the anti-stemness activity of nanocomplexes (DE-FeO NPs) was investigated against human and mouse glioma stem cells (GSCs) and radioresistant GSCs (GSCs-RR). DE-FeO NPs exhibited the strongest growth inhibition effect on the treated human GSCs (MGG18 and JX39P), mouse GSCs (GS and PDGF-GSC) and their radioresistant cells (IC50 ≤ 70 and 161 μg/mL, respectively). DE-FeO NPs also revealed a higher inhibitory impact than standard chemotherapy (temozolomide, TMZ) on self-renewal, cancer repopulation, chemoresistance, and radioresistance potentials. Besides, DE-FeO NPs surpassed TMZ regarding the effect on relative expression of all studied stemness genes, as well as relative p-AKT/AKT ratio in the treated MGG18, GS and their radioresistant (MGG18-RR and GS-RR). This potent anti-stemness influence is primarily attributed to ALDH1A1 inhibition and ferroptosis induction, as confirmed by significant elevation of cellular reactive oxygen species and lipid peroxidation with significant depletion of glutathione and glutathione peroxidase 4. DE-FeO NPs recorded the optimal LogP value for crossing the blood brain barrier. This in vitro novel study declared the potency of DE-FeO NPs for collapsing GSCs and GSCs-RR with improving their sensitivity to chemotherapy and radiotherapy, indicating that DE-FeO NPs may be a promising remedy for GBM. Glioma animal models will be needed for in-depth studies on its safe effectiveness.</p

    Presentation1_Diethyldithiocarbamate-ferrous oxide nanoparticles inhibit human and mouse glioblastoma stemness: aldehyde dehydrogenase 1A1 suppression and ferroptosis induction.PPTX

    No full text
    The development of effective therapy for eradicating glioblastoma stem cells remains a major challenge due to their aggressive growth, chemoresistance and radioresistance which are mainly conferred by aldehyde dehydrogenase (ALDH)1A1. The latter is the main stemness mediator via enhancing signaling pathways of Wnt/β-catenin, phosphatidylinositol 3-kinase/AKT, and hypoxia. Furthermore, ALDH1A1 mediates therapeutic resistance by inactivating drugs, stimulating the expression of drug efflux transporters, and detoxifying reactive radical species, thereby apoptosis arresting. Recent reports disclosed the potent and broad-spectrum anticancer activities of the unique nanocomplexes of diethyldithiocarbamate (DE, ALDH1A1 inhibitor) with ferrous oxide nanoparticles (FeO NPs) mainly conferred by inducing lipid peroxidation-dependent non-apoptotic pathways (iron accumulation-triggered ferroptosis), was reported. Accordingly, the anti-stemness activity of nanocomplexes (DE-FeO NPs) was investigated against human and mouse glioma stem cells (GSCs) and radioresistant GSCs (GSCs-RR). DE-FeO NPs exhibited the strongest growth inhibition effect on the treated human GSCs (MGG18 and JX39P), mouse GSCs (GS and PDGF-GSC) and their radioresistant cells (IC50 ≤ 70 and 161 μg/mL, respectively). DE-FeO NPs also revealed a higher inhibitory impact than standard chemotherapy (temozolomide, TMZ) on self-renewal, cancer repopulation, chemoresistance, and radioresistance potentials. Besides, DE-FeO NPs surpassed TMZ regarding the effect on relative expression of all studied stemness genes, as well as relative p-AKT/AKT ratio in the treated MGG18, GS and their radioresistant (MGG18-RR and GS-RR). This potent anti-stemness influence is primarily attributed to ALDH1A1 inhibition and ferroptosis induction, as confirmed by significant elevation of cellular reactive oxygen species and lipid peroxidation with significant depletion of glutathione and glutathione peroxidase 4. DE-FeO NPs recorded the optimal LogP value for crossing the blood brain barrier. This in vitro novel study declared the potency of DE-FeO NPs for collapsing GSCs and GSCs-RR with improving their sensitivity to chemotherapy and radiotherapy, indicating that DE-FeO NPs may be a promising remedy for GBM. Glioma animal models will be needed for in-depth studies on its safe effectiveness.</p

    Table2_Diethyldithiocarbamate-ferrous oxide nanoparticles inhibit human and mouse glioblastoma stemness: aldehyde dehydrogenase 1A1 suppression and ferroptosis induction.docx

    No full text
    The development of effective therapy for eradicating glioblastoma stem cells remains a major challenge due to their aggressive growth, chemoresistance and radioresistance which are mainly conferred by aldehyde dehydrogenase (ALDH)1A1. The latter is the main stemness mediator via enhancing signaling pathways of Wnt/β-catenin, phosphatidylinositol 3-kinase/AKT, and hypoxia. Furthermore, ALDH1A1 mediates therapeutic resistance by inactivating drugs, stimulating the expression of drug efflux transporters, and detoxifying reactive radical species, thereby apoptosis arresting. Recent reports disclosed the potent and broad-spectrum anticancer activities of the unique nanocomplexes of diethyldithiocarbamate (DE, ALDH1A1 inhibitor) with ferrous oxide nanoparticles (FeO NPs) mainly conferred by inducing lipid peroxidation-dependent non-apoptotic pathways (iron accumulation-triggered ferroptosis), was reported. Accordingly, the anti-stemness activity of nanocomplexes (DE-FeO NPs) was investigated against human and mouse glioma stem cells (GSCs) and radioresistant GSCs (GSCs-RR). DE-FeO NPs exhibited the strongest growth inhibition effect on the treated human GSCs (MGG18 and JX39P), mouse GSCs (GS and PDGF-GSC) and their radioresistant cells (IC50 ≤ 70 and 161 μg/mL, respectively). DE-FeO NPs also revealed a higher inhibitory impact than standard chemotherapy (temozolomide, TMZ) on self-renewal, cancer repopulation, chemoresistance, and radioresistance potentials. Besides, DE-FeO NPs surpassed TMZ regarding the effect on relative expression of all studied stemness genes, as well as relative p-AKT/AKT ratio in the treated MGG18, GS and their radioresistant (MGG18-RR and GS-RR). This potent anti-stemness influence is primarily attributed to ALDH1A1 inhibition and ferroptosis induction, as confirmed by significant elevation of cellular reactive oxygen species and lipid peroxidation with significant depletion of glutathione and glutathione peroxidase 4. DE-FeO NPs recorded the optimal LogP value for crossing the blood brain barrier. This in vitro novel study declared the potency of DE-FeO NPs for collapsing GSCs and GSCs-RR with improving their sensitivity to chemotherapy and radiotherapy, indicating that DE-FeO NPs may be a promising remedy for GBM. Glioma animal models will be needed for in-depth studies on its safe effectiveness.</p

    MUC1c Regulates Cell Survival in Pancreatic Cancer by Preventing Lysosomal Permeabilization

    Get PDF
    <div><h3>Background</h3><p>MUC1 is a type I transmembrane glycoprotein aberrantly overexpressed in various cancer cells including pancreatic cancer. The cytosolic end of MUC1 (MUC1-c) is extensively involved in a number of signaling pathways. MUC1-c is reported to inhibit apoptosis in a number of cancer cells, but the mechanism of inhibition is unclear.</p> <h3>Method</h3><p>Expression of MUC1-c was studied in the pancreatic cancer cell line MIAPaCa-2 at the RNA level by using qRTPCR and at the protein level by Western blotting. MUC1-c expression was inhibited either by siRNA or by a specific peptide inhibitor, GO-201. Effect of MUC1-c inhibition on viability and proliferation and lysosomal permeabilization were studied. Association of MUC1-c with HSP70 was detected by co-immunoprecipitation of MUC1-c and HSP70. Localization of MUC1-c in cellular organelles was monitored by immunofluorescence and with immuno- blotting by MUC1-c antibody after subcellular fractionation.</p> <h3>Results</h3><p>Inhibition of MUC1-c by an inhibitor (GO-201) or siRNA resulted in reduced viability and reduced proliferation of pancreatic cancer cells. Furthermore, GO-201, the peptide inhibitor of MUC1-c, was effective in reducing tumor burden in pancreatic cancer mouse model. MUC1-c was also found to be associated with HSP70 in the cytosol, although a significant amount of MUC1 was also seen to be present in the lysosomes. Inhibition of MUC1 expression or activity showed an enhanced Cathepsin B activity in the cytosol, indicating lysosomal permeabilization. Therefore this study indicates that MUC1-c interacted with HSP70 in the cytosol of pancreatic cancer cells and localized to the lysosomes in these cells. Further, our results showed that MUC1-c protects pancreatic cancer cells from cell death by stabilizing lysosomes and preventing release of Cathepsin B in the cytosol.</p> </div

    Inhibition of MUC1 expression or activity results in reduced proliferation and cell viability.

    No full text
    <p>MUC1 expression was inhibited by siRNA in MIAPaCa-2 (A) Lanes 1–3 show control MIAPaCa-2, MIAPaCa-2 transfected with non-specific siRNA and MUC1 siRNA respectively. Both proliferation (B) and viability (C) were reduced with decreased expression of MUC1 in MIAPaCa-2 cells. On treatment with MUC1-C activity inhibitor GO-201, which inhibits the signaling activity of this protein, no change was seen in expression levels of MUC1 in MIAPaCa-2 cells (D). Lane 1 was untreated MIAPaCa-2 cells and lane 2 was MIAPaCa-2 treated with GO-201. Proliferation (E) and viability (F) were seen to be decreased. Similarly, in another cell line, AsPC-1, transfection with siRNA showed decreased protein levels (G) where Lane 1 is control AsPC-1, Lane 2: non-specific siRNA transfected AsPC-1 and Lane 3 is MUC1 siRNA-transfected AsPC1. Both proliferation (H) and viability (I) were reduced. On treatment with the inhibitor GO-201, there was no change in protein levels (J): Lane 1 was untreated AsPC-1 cells and lane 2 was AsPC-1 treated with GO-201. Proliferation (K) and viability (L) were seen to be reduced. Data are expressed as mean+/−SEM of 3 independent experiments. *<i>P</i><.05 (<i>t</i> test) as compared with controls.</p

    MUC1 is expressed in most pancreatic cancer cell lines and mouse models.

    No full text
    <p>mRNA expression levels of MUC1 in several pancreatic cancer cell lines relative to non-tumorigenic HPDEC (A). Data are expressed as mean+/−SEM of 3 independent experiments. *<i>P</i><.05 (<i>t</i> test) as compared with controls. Protein expression levels of MUC1-c in different pancreatic cancer cell line and non-tumorigenic HPDEC (B).</p
    corecore