8 research outputs found

    Restoration of biogeomorphic systems by creating windows of opportunity to support natural establishment processes

    Get PDF
    In degraded landscapes, recolonization by pioneer vegetation is often halted by the presence of persistent environmental stress. When natural expansion does occur, it is commonly due to the momentary alleviation of a key environmental variable previously limiting new growth. Thus, studying the circumstances in which expansion occurs can inspire new restoration techniques, wherein vegetation establishment is provoked by emulating natural events through artificial means. Using the salt-marsh pioneer zone on tidal flats as a biogeomorphic model system, we explore how locally raised sediment bed forms, which are the result of natural (bio)geomorphic processes, enhance seedling establishment in an observational study. We then conduct a manipulative experiment designed to emulate these facilitative conditions in order to enable establishment on an uncolonized tidal flat. Here, we attempt to generate raised growth-promoting sediment bed forms using porous artificial structures. Flume experiments demonstrate how these structures produce a sheltered hydrodynamic environment in which suspended sediment and seeds preferentially settle. The application of these structures in the field led to the formation of stable, raised sediment platforms and the spontaneous recruitment of salt-marsh pioneers in the following growing season. These recruits were composed primarily of the annual pioneering Salicornia genus, with densities of up to 140 individuals/m2 within the structures, a 60-fold increase over ambient densities. Lower abundances of five other perennial species were found within structures that did not appear elsewhere in the pioneer zone. Furthermore, recruits grew to be on average three times greater in mass inside of the structures than in the neighboring ambient environment. The success of this restoration design may be attributed to the combination of three factors: (1) enhanced seed retention, (2) suppressed mortality, and (3) accelerated growth rates on the elevated surfaces generated by the artificial structures. We argue that restoration approaches similar to the one shown here, wherein the conditions for natural establishment are actively mimicked to promote vegetation development, may serve as promising tools in many biogeomorphic ecosystems, ranging from coastal to arid ecosystems

    Where should hydrology go? An early-career perspective on the next IAHS Scientific Decade: 2023-2032

    Full text link
    This paper shares an early-career perspective on potential themes for the upcoming International Association of Hydrological Sciences (IAHS) scientific decade (SD). This opinion paper synthesizes six discussion sessions in western Europe identifying three themes that all offer a different perspective on the hydrological threats the world faces and could serve to direct the broader hydrological community: “Tipping points and thresholds in hydrology”, “Intensification of the water cycle”, and “Water services under pressure”. Additionally, four trends were distinguished concerning the way in which hydrological research is conducted: big data, bridging science and practice, open science, and inter- and multidisciplinarity. These themes and trends will provide valuable input for future discussions on the theme for the next IAHS SD. We encourage other Early-Career Scientists to voice their opinion by organizing their own discussion sessions and commenting on this paper to make this initiative grow from a regional initiative to a global movement

    Where should hydrology go? An early-career perspective on the next IAHS Scientific Decade: 2023–2032

    No full text
    This paper shares an early-career perspective on potential themes for the upcoming International Association of Hydrological Sciences (IAHS) Scientific Decade (SD). This opinion paper synthesizes six discussion sessions in western Europe identifying three themes that all offer a different perspective on the hydrological threats the world faces and could serve to direct the broader hydrological community: “Tipping points and thresholds in hydrology,” “Intensification of the water cycle,” and “Water services under pressure.” Additionally, four trends were distinguished concerning the way in which hydrological research is conducted: big data, bridging science and practice, open science, and inter- and multidisciplinarity. These themes and trends will provide valuable input for future discussions on the theme for the next IAHS SD. We encourage other early-career scientists to voice their opinion by organizing their own discussion sessions and commenting on this paper to make this initiative grow from a regional initiative to a global movement
    corecore