20 research outputs found

    Effect of Cavtratin, a Caveolin-1 Scaffolding Domain Peptide, on Oligodendroglial Signaling Cascades

    Get PDF
    Caveolin and caveolin containing rafts are involved in the signaling of growth factors in various cell types. Previous reports of our lab indicated a co-localization of caveolin and the high affinity nerve growth factor (NGF) receptor tyrosine kinase A (TrkA). Mutual effects have been observed among which a caveolin-1 knock-down resulted in an impairment of the NGF signaling cascade rather than in an increase of activity as expected from other growth factor reports. On the other hand, an over-expression of caveolin-1 impaired the NGF stimulated activity of p42/44 mitogen activated protein kinases (MAPK). In this study, we used a caveolin-1 scaffolding domain (CSD) peptide (cavtratin) of which an inhibitory effect on growth factor receptors was reported. Our data showed that cavtratin suppresses the NGF-induced phosphorylation of TrkA as well as the activation of MAPK in porcine oligodendrocytes significantly

    Identification of Novel Genes and Pathways Regulating SREBP Transcriptional Activity

    Get PDF
    BACKGROUND: Lipid metabolism in mammals is orchestrated by a family of transcription factors called sterol regulatory element-binding proteins (SREBPs) that control the expression of genes required for the uptake and synthesis of cholesterol, fatty acids, and triglycerides. SREBPs are thus essential for insulin-induced lipogenesis and for cellular membrane homeostasis and biogenesis. Although multiple players have been identified that control the expression and activation of SREBPs, gaps remain in our understanding of how SREBPs are coordinated with other physiological pathways. METHODOLOGY: To identify novel regulators of SREBPs, we performed a genome-wide cDNA over-expression screen to identify proteins that might modulate the transcription of a luciferase gene driven from an SREBP-specific promoter. The results were verified through secondary biological assays and expression data were analyzed by a novel application of the Gene Set Enrichment Analysis (GSEA) method. CONCLUSIONS/SIGNIFICANCE: We screened 10,000 different cDNAs and identified a number of genes and pathways that have previously not been implicated in SREBP control and cellular cholesterol homeostasis. These findings further our understanding of lipid biology and should lead to new insights into lipid associated disorders

    Morphology and hemodynamics during vascular regeneration in critically ischemic murine skin studied by intravital microscopy techniques

    Full text link
    BACKGROUND: With the understanding of angiogenesis and arteriogenesis, new theories about the orchestration of these processes have emerged. The aim of this study was to develop an in vivo model that enables visualization of vascular regenerating mechanisms by intravital microscopy techniques in collateral arteriolar flap vascularity. METHODS: A dorsal skin flap (15 × 30 mm) was created in mice and fixed into a skinfold chamber to allow for assessment of morphology and microhemodynamics by intravital fluorescence microscopy (IVFM). Laser scanning confocal microscopy (LSCM) was utilized for three-dimensional reconstruction of the microvascular architecture. RESULTS: Flap tpO(2) was 5.3 ± 0.9 versus 30.5 ± 1.2 mm Hg in controls (p < 0.01). The collateral arterioles in the flap tissue were dilated (29.4 ± 5.3 μm; p < 0.01 vs. controls) and lengthened in a tortuous manner (tortuosity index 1.00 on day 1 vs. 1.35± 0.05 on day 12; p < 0.01). Functional capillary density was increased from 121.00 ± 25 to 170 ± 30 cm/cm(2) (day 12; p < 0.01) as a result of angiogenesis. Morphological evidence of angiogenesis on capillary level and vascular remodeling on arteriolar level could be demonstrated by IVFM and LSCM. CONCLUSIONS: Present intravital microscopy techniques offer unique opportunities to study structural changes and hemodynamic effects of vascular regeneration in this extended axial pattern flap model
    corecore