307 research outputs found
Isolation of a SIR-like gene, SIR-T8, that is overexpressed in thyroid carcinoma cell lines and tissues
We used subtractive library screening to identify the changes that occur in gene expression during thyroid cell neoplastic transformation. Complementary DNA from normal thyroid cells (HTC 2) was subtracted from a complementary DNA library constructed from a human thyroid papillary carcinoma cell line. The library was screened for genes upregulated in human thyroid papillary carcinoma cell line cells, and several cDNA clones were isolated. One of these clones has a sirtuin core and high homology with the human silent information regulator protein family. This clone, designated ‘SIR-T8’, was overexpressed in human thyroid carcinoma cell lines and tissues, but not in adenomas. The human SIR-T8 protein has a molecular weight of 39 kDa and is primarily located in the cytoplasm under the nuclear membrane. The SIR-T8 gene is located on chromosome 17q25-1
Combined lymphocyte/monocyte count, D-dimer and iron status predict COVID-19 course and outcome in a long-term care facility
Background: The Sars-CoV-2 can cause severe pneumonia with multiorgan disease; thus, the identification of clinical and laboratory predictors of the progression towards severe and fatal forms of this illness is needed. Here, we retrospectively evaluated and integrated laboratory parameters of 45 elderly subjects from a long-term care facility with Sars-CoV-2 outbreak and spread, to identify potential common patterns of systemic response able to better stratify patients’ clinical course and outcome. Methods: Baseline white blood cells, granulocytes’, lymphocytes’, and platelets’ counts, hemoglobin, total iron, ferritin, D-dimer, and interleukin-6 concentration were used to generate a principal component analysis. Statistical analysis was performed by using R statistical package version 4.0. Results: We identified 3 laboratory patterns of response, renamed as low-risk, intermediate-risk, and high-risk, strongly associated with patients’ survival (p < 0.01). D-dimer, iron status, lymphocyte/monocyte count represented the main markers discriminating high- and low-risk groups. Patients belonging to the high-risk group presented a significantly longer time to ferritin decrease (p: 0.047). Iron-to-ferritin-ratio (IFR) significantly segregated recovered and dead patients in the intermediate-risk group (p: 0.012). Conclusions: Our data suggest that a combination of few laboratory parameters, i.e. iron status, D-dimer and lymphocyte/monocyte count at admission and during the hospital stay, can predict clinical progression in COVID-19
Search for NTRK1 proto-oncogene rearrangements in human thyroid tumours originated after therapeutic radiation
Rearrangements of NTRK1 proto-oncogene were detected in ‘spontaneous’ papillary thyroid carcinomas with a frequency varying from 5 to 25% in different studies. These rearrangements result in the formation of chimaeric genes composed of the tyrosine kinase domain of NTRK1 fused to 5′ sequences of different genes. To investigate if the NTRK1 gene plays a role in radiation-induced thyroid carcinogenesis, we looked for the presence of NTRK1 -activating rearrangements in 32 human thyroid tumours (16 follicular adenomas, 14 papillary carcinomas and two lymph-node metastases of papillary thyroid carcinomas) from patients who had received external radiation, using the reverse transcription polymerase chain reaction, Southern blot and direct sequencing techniques. These data were compared with those obtained in a series of 28 ‘spontaneous’ benign and malignant thyroid tumours, collected from patients without a history of radiation exposure and four in vitro culture cell lines derived from ‘spontaneous’ thyroid cancers. Our results concerning the radiation-associated tumours showed that only rearrangements between NTRK1 and TPM3 genes (TRK oncogene) were detected in 2/14 papillary carcinomas and in one lymph-node metastasis of one of these papillary thyroid carcinomas. All the radiation-associated adenomas were negative. In the ‘spontaneous’ tumours, only one of the 14 papillary carcinomas and one of the four in vitro culture cell lines, derived from a papillary carcinoma, presented a NTRK1 rearrangement also with the TPM3 gene. Twenty-five of this series of radiation-associated tumours were previously studied for the ras and RET/PTC oncogenes. In conclusion, our data: (a) show that the overall frequency of NTRK1 rearrangements is similar between radiation-associated (2/31: 6%) and ‘spontaneous’ epithelial thyroid tumours (2/32: 6%). The frequency, if we consider exclusively the papillary carcinomas, is in both cases 12%; (b) show that the TRK oncogene plays a role in the development of a minority of radiation-associated papillary thyroid carcinomas but not in adenomas; and (c) confirm that RET/PTC rearrangements are the major genetic alteration associated with ionizing radiation-induced thyroid tumorigenesis. © 2000 Cancer Research Campaig
Gene rearrangement and Chernobyl related thyroid cancers
The increase in thyroid carcinoma post-Chernobyl has been largely confined to a specific subtype of papillary carcinoma (solid/follicular). This subtype is observed predominantly in children under 10 in unirradiated populations, but maintains a high frequency in those aged 10–15 from those areas exposed to fallout from the Chernobyl accident. The aim of this study was to link morphology with molecular biology. We examined 106 papillary carcinomas from children under the age of 15 at operation. All were examined for rearrangements of the RET oncogene by reverse transcription polymerase chain reaction (RT-PCR); a subset of these cases were also examined for mutations of the three ras oncogenes, exon 10 of the thyroid stimulating hormone receptor, associated more usually with a follicular rather than papillary morphology, and exons 5, 6, 7 and 8 of the p53 gene, commonly involved in undifferentiated thyroid carcinoma. Rearrangements of the RET oncogene were found in 44% of papillary carcinomas in which we studied fresh material; none of the tumours examined showed mutation in any of the other genes. The two rearrangements resulting from inversion of part of chromosome 10 (PTC1 and PTC3) accounted for the majority of RET rearrangements identified, with PTC1 being associated with papillary carcinomas of the classic and diffuse sclerosing variants and PTC3 with the solid/follicular variant. © 2000 Cancer Research Campaig
Effect of Antihypertensive Therapy with Alpha Methyldopa on Levels of Angiogenic Factors in Pregnancies with Hypertensive Disorders
Antihypertensive drugs are believed to lower blood pressure in pre-eclampsia by direct or central vasodilatory mechanisms. However, they could also act by decreasing production of anti-angiogenic proteins involved in the pathophysiology of hypertension and proteinuria in pre-eclampsia (PE). The aim of our study was to evaluate the impact of antihypertensive therapy with alpha methyldopa on maternal circulating levels and placental production of soluble fms-like tyrosine kinase 1 (sFlt-1), soluble endoglin (sEng), vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) in hypertensive disorders of pregnancy
UbcH10 overexpression may represent a marker of anaplastic thyroid carcinomas
The hybridisation of an Affymetrix HG_U95Av2 oligonucleotide array with RNAs extracted from six human thyroid carcinoma cell lines and a normal human thyroid primary cell culture led us to the identification of the UbcH10 gene that was upregulated by 150-fold in all of the carcinoma cell lines in comparison to the primary culture cells of human normal thyroid origin. Immunohistochemical studies performed on paraffin-embedded tissue sections showed abundant UbcH10 levels in thyroid anaplastic carcinoma samples, whereas no detectable UbcH10 expression was observed in normal thyroid tissues, in adenomas and goiters. Papillary and follicular carcinomas were only weakly positive. These results were further confirmed by RT–PCR and Western blot analyses. The block of UbcH10 protein synthesis induced by RNA interference significantly reduced the growth rate of thyroid carcinoma cell lines. Taken together, these results would indicate that UbcH10 overexpression is involved in thyroid cell proliferation, and may represent a marker of thyroid anaplastic carcinomas
Modulatory role of phospholipase D in the activation of signal transducer and activator of transcription (STAT)-3 by thyroid oncogenic kinase RET/PTC
<p>Abstract</p> <p>Background</p> <p>RET/PTC (rearranged in transformation/papillary thyroid carcinomas) gene rearrangements are the most frequent genetic alterations identified in papillary thyroid carcinoma. Although it has been established that RET/PTC kinase plays a crucial role in intracellular signaling pathways that regulate cellular transformation, growth, and proliferation in thyroid epithelial cells, the upstream signaling that leads to the activation of RET/PTC is largely unknown. Based on the observation of high levels of PLD expression in human papillary thyroid cancer tissues, we investigated whether PLD plays a role in the regulating the RET/PTC-induced STAT3 activation.</p> <p>Methods</p> <p>Cancer tissue samples were obtained from papillary thyroid cancer patients (n = 6). The expression level of PLD was examined using immunohistochemistry and western blotting. Direct interaction between RET/PTC and PLD was analyzed by co-immunoprecipitation assay. PLD activity was assessed by measuring the formation of [<sup>3</sup>H]phosphatidylbutanol, the product of PLD-mediated transphosphatidylation, in the presence of <it>n</it>-butanol. The transcriptional activity of STAT3 was assessed by m67 luciferase reporter assay.</p> <p>Results</p> <p>In human papillary thyroid cancer, the expression levels of PLD2 protein were higher than those in the corresponding paired normal tissues. PLD and RET/PTC could be co-immunoprecipitated from cells where each protein was over-expressed. In addition, the activation of PLD by pervanadate triggered phosphorylation of tyrosine 705 residue on STAT-3, and its phosphorylation was dramatically higher in TPC-1 cells (from papillary carcinoma) that have an endogenous RET/PTC1 than in ARO cells (from anaplastic carcinoma) without alteration of total STAT-3 expression. Moreover, the RET/PTC-mediated transcriptional activation of STAT-3 was synergistically increased by over-expression of PLD, whereas the PLD activity as a lipid hydrolyzing enzyme was not affected by RET/PTC.</p> <p>Conclusion</p> <p>These findings led us to suggest that the PLD synergistically functions to activate the STAT3 signaling by interacting directly with the thyroid oncogenic kinase RET/PTC.</p
- …