606 research outputs found

    Experimental conditions to suppress edge localised modes by magnetic perturbations in the ASDEX Upgrade tokamak

    Full text link
    Access conditions for full suppression of Edge Localised Modes (ELMs) by Magnetic Perturbations (MP) in low density high confinement mode (H-mode) plasmas are studied in the ASDEX Upgrade tokamak. The main empirical requirements for full ELM suppression in our experiments are: 1. The poloidal spectrum of the MP must be aligned for best plasma response from weakly stable kink-modes, which amplify the perturbation, 2. The plasma edge density must be below a critical value, 3.3×10193.3 \times 10^{19}~m3^{-3}. The edge collisionality is in the range νi=0.150.42\nu^*_i = 0.15-0.42 (ions) and νe=0.150.25\nu^*_e = 0.15-0.25 (electrons). However, our data does not show that the edge collisionality is the critical parameter that governs access to ELM suppression. 3. The pedestal pressure must be kept sufficiently low to avoid destabilisation of small ELMs. This requirement implies a systematic reduction of pedestal pressure of typically 30\% compared to unmitigated ELMy H-mode in otherwise similar plasmas. 4. The edge safety factor q95q_{95} lies within a certain window. Within the range probed so far, q95=3.54.2q_{95}=3.5-4.2, one such window, q95=3.573.95q_{95}=3.57-3.95 has been identified. Within the range of plasma rotation encountered so far, no apparent threshold of plasma rotation for ELM suppression is found. This includes cases with large cross field electron flow in the entire pedestal region, for which two-fluid MHD models predict that the resistive plasma response to the applied MP is shielded

    Mixed hydrogen-deuterium plasmas on JET ILW

    Get PDF
    A study of mixed hydrogen-deuterium H-mode plasmas has been carried out in JET-ILW to strengthen the physics basis for extrapolations to JET D-T operation and to support the development of strategies for isotope ratio control in future experiments. Variations of input power, gas fuelling and isotopic mixture were performed in H-mode plasmas of the same magnetic field, plasma current and divertor configuration. The analysis of the energy confinement as a function of isotope mixture reveals that the biggest change is seen in plasmas with small fractions of H or D, in particular when including pure isotope plasmas. To interpret the results correctly, the dependence of the power threshold for access to type-I ELMing H-modes on the isotope mixture must be taken into account. For plasmas with effective mass between 1.2 and 1.8 the plasma thermal stored energy (Wth) scales as m 0.1 eff, which is weaker than that in the ITER physics basis, IPB98 scaling. At fixed stored energy, deuterium-rich plasmas feature higher density pedestals, while the temperature at the pedestal top is lower, showing that at the same gas fuelling rate and power level, the pedestal pressure remains constant with an exchange of density and temperature as the isotope ratio is varied. Isotope control was successfully tested in JET-ILW by changing the isotope ratio throughout a discharge, switching from D to H gas puffing. Several energy confinement times (300 ms) are needed to fully change the isotope ratio during a discharge.EUROfusion Consortium Grant Agreement No. 633 053RCUK Energy Programme (Grant Number EP/I501 045)H2020 Marie-Sklodowska Curie programme (Grant No. 708 257)Spanish Ministry of Economy and Competitiveness (Grant No. FJCI-201 422 139

    Optimizing beam-ion confinement in ITER by adjusting the toroidal phase of the 3D magnetic fields applied for ELM control

    Get PDF
    The confinement of neutral beam injection (NBI) particles in the presence of n = 3 resonant magnetic perturbations (RMPs) in 15 MA ITER DT plasmas has been studied using full orbit ASCOT simulations. Realistic NBI distribution functions, and 3D wall and equilibria, including the plasma response to the externally applied 3D fields calculated with MARS-F, have been employed. The observed total fast-ion losses depend on the poloidal spectra of the applied n = 3 RMP as well as on the absolute toroidal phase of the applied perturbation with respect to the NBI birth distribution. The absolute toroidal phase of the RMP perturbation does not affect the ELM control capabilities, which makes it a key parameter in the confinement optimization. The physics mechanisms underlying the observed fast-ion losses induced by the applied 3D fields have been studied in terms of the variation of the particle canonical angular momentum (δPϕ) induced by the applied 3D fields. The presented simulations indicate that the transport is located in an edge resonant transport layer as observed previously in ASDEX upgrade studies. Similarly, our results indicate that an overlapping of several linear and nonlinear resonances at the edge of the plasma might be responsible for the observed fast-ion losses. The results presented here may help to optimize the RMP configuration with respect to the NBI confinement in future ITER discharges.Spanish Ministry of Science, Innovation and Universities (grant BES2013-065501)EUROfusion Consortium grant agreement No. 633053European Union’s Horizon 2020 (grant agreement No. 805162)Academy of Finland project No. 32475

    I-mode pedestal relaxation events at ASDEX Upgrade

    Get PDF
    The I-mode confinement regime can feature small edge temperature drops that can lead to an increase in the energy deposited onto the divertor targets. In this work, we show that these events are associated with a relaxation of both electron temperature and density edge profiles, with the largest drop found at the pedestal top position. The relative energy loss is about 1 %, and is thus lower than that of type-I ELMs for the same pedestal top collisionality. Stability analysis of edge profiles reveals that the operational points are far from the ideal peeling-ballooning boundary. Also, we show that these events appear close to the H-mode transition in the typical I-mode operational space in ASDEX Upgrade, and that no further enhancement of energy confinement is found when they occur. Moreover, scrape-off layer transport during these events is found to be very similar to type-I ELMs, with regard to timescales (≈ 800 µs), filament propagation, toroidally asymmetric energy effluxes at the midplane and asymmetry between inner and outer divertor deposited energy. In particular, the latter reveals that more energy reaches the outer divertor target. Lastly, first measurements of the divertor peak energy fluence are reported, and projections to ARC—a reactor that could potentially operate in I-mode—are drawn.EUROfusion Consortium Grant Agreement No. 63305

    Electron temperature fluctuation measurements in the pedestal of improved confinement regimes at ASDEX Upgrade

    Get PDF
    US DOE (DE-SC0006419, DE-SC0014264, and DE- SC0017381)EUROfusion Consortium (No. 633053

    Improved ERO modelling of beryllium erosion at ITER upper first wall panel using JET-ILW and PISCES-B experience

    Get PDF
    ERO is a 3D Monte-Carlo impurity transport and plasma-surface interaction code. In 2011 it was applied for the ITER first wall (FW) life time predictions [1] (critical blanket module BM11). After that the same code was significantly improved during its application to existing fusion-relevant plasma devices: the tokamak JET equipped with an ITER-like wall and linear plasma device PISCES-B. This has allowed testing the sputtering data for beryllium (Be) and showing that the “ERO-min” fit based on the large (50%) deuterium (D) surface content is well suitable for plasma-wetted areas (D plasma). The improved procedure for calculating of the effective sputtering yields for each location along the plasma-facing surface using the recently developed semi-analytical sheath approach was validated. The re-evaluation of the effective yields for BM11 following the similar revisit of the JET data has indicated significant increase of erosion and motivated the current re-visit of ERO simulations.EURATOM 63305
    corecore