206 research outputs found

    Plasma density measurements using chirped pulse broad-band Raman amplification

    Get PDF
    Stimulated Raman backscattering is used as a non-destructive method to determine the density of plasma media at localized positions in space and time. By colliding two counter-propagating, ultra-short laser pulses with a spectral bandwidth larger than twice the plasma frequency, amplification occurs at the Stokes wavelengths, which results in regions of gain and loss separated by twice the plasma frequency, from which the plasma density can be deduced. By varying the relative delay between the laser pulses, and therefore the position and timing of the interaction, the spatio-temporal distribution of the plasma density can be mapped out

    Raman backscattering saturation due to coupling between ??p and 2??p modes in plasma

    Get PDF
    Raman backscattering (RBS) in plasma is the basis of plasma-based amplifiers and is important in laser-driven fusion experiments. We show that saturation can arise from nonlinearities due to coupling between the fundamental and harmonic plasma wave modes for sufficiently intense pump and seed pulses. We present a time-dependent analysis that shows that plasma wave phase shifts reach a maximum close to wave breaking. The study contributes to a new understanding of RBS saturation for counter-propagating laser pulses.open0

    Chirped pulse Raman amplification in plasma

    Get PDF
    Raman amplification in plasma has been proposed to be a promising method of amplifying short radiation pulses. Here, we investigate chirped pulse Raman amplification (CPRA) where the pump pulse is chirped and leads to spatiotemporal distributed gain, which exhibits superradiant scaling in the linear regime, usually associated with the nonlinear pump depletion and Compton amplification regimes. CPRA has the potential to serve as a high-efficiency high-fidelity amplifier/compressor stage

    Raman backscattering saturation due to coupling between Ļ‰p and 2Ļ‰p modes in plasma

    Get PDF
    Raman backscattering (RBS) in plasma is the basis of plasma-based amplifiers and is important in laser-driven fusion experiments. We show that saturation can arise from nonlinearities due to coupling between the fundamental and harmonic plasma wave modes for sufficiently intense pump and seed pulses. We present a time-dependent analysis that shows that plasma wave phase shifts reach a maximum close to wavebreaking. The study contributes to a new understanding of RBS saturation for counter-propagating laser pulses

    Pepper-pot emittance measurement of laser-plasma wakefield accelerated electrons

    Get PDF
    The transverse emittance is an important parameter governing the brightness of an electron beam. Here we present the first pepper-pot measurement of the transverse emittance for a mono-energetic electron beam from a laser-plasma wakefield accelerator, carried out on the Advanced Laser-Plasma High Energy Accelerators towards X-Rays (ALPHA-X) beam line. Mono-energetic electrons are passed through an array of 52 mu m diameter holes in a tungsten mask. The pepper-pot results set an upper limit for the normalised emittance at 5.5 +/- 1 pi mm mrad for an 82 MeV beam

    Particle-in-cell simulation of plasma-based amplification using a moving window

    Get PDF
    Current high-power laser amplifiers use chirped-pulse amplification to prevent damage to their solid-state components caused by intense electromagnetic fields. To increase laser power further requires ever larger and more expensive devices. The Raman backscatter instability in plasma facilitates an alternative amplification strategy without the limitations imposed by material damage thresholds. Plasma-based amplification has been experimentally demonstrated, but only with relatively low efficiency. Further progress requires extensive use of numerical simulations, which usually need significant computational resources. Here we present particle-in-cell (PIC) simulation techniques for accurately simulating Raman amplification using a moving window with suitable boundary conditions, reducing computational cost. We show that an analytical model for matched pump propagation in a parabolic plasma channel slightly overestimates amplification as pump laser intensity is increased. However, a method for loading data saved from separate pump-only simulations demonstrates excellent agreement with full PIC simulation. The reduction in required resources will enable parameter scans to be performed to optimize amplification, and stimulate efforts toward developing viable plasma-based laser amplifiers. The methods may also be extended to investigate Brillouin scattering, and for the development of laser wakefield accelerators. Efficient, compact, low-cost amplifiers would have widespread applications in academia and industry

    Fish mitigate trophic depletion in marine cave ecosystems.

    Get PDF
    Dark marine habitats are often characterized by a food-limited condition. Peculiar dark habitats include marine caves, characterized by the absence of light and limited water flow, which lead to reduced fluxes of organic matter for cave-dwelling organisms. We investigated whether the most abundant and common cave-dwelling fish Apogon imberbis has the potential to play the role of trophic vector in Mediterranean marine caves. We first analysed stomach contents to check whether repletion changes according to a nycthemeral cycle. We then identified the prey items, to see whether they belong to species associated with cave habitats or not. Finally, we assessed whether A. imberbis moves outside marine caves at night to feed, by collecting visual census data on A. imberbis density both inside and outside caves, by day and by night. The stomach repletion of individuals sampled early in the morning was significantly higher than later in the day. Most prey were typical of habitats other than caves. A. imberbis was on average more abundant within caves during the day and outside during the night. Our study supports the hypothesis regarding the crucial trophic role of A. imberbis in connecting Mediterranean marine caves with external habitat

    Chirped pulse Raman amplification in warm plasma: towards controlling saturation

    Get PDF
    Stimulated Raman backscattering in plasma is potentially an efficient method of amplifying laser pulses to reach exawatt powers because plasma is fully broken down and withstands extremely high electric fields. Plasma also has unique nonlinear optical properties that allow simultaneous compression of optical pulses to ultra-short durations. However, current measured efficiencies are limited to several percent. Here we investigate Raman amplification of short duration seed pulses with different chirp rates using a chirped pump pulse in a preformed plasma waveguide. We identify electron trapping and wavebreaking as the main saturation mechanisms, which lead to spectral broadening and gain saturation when the seed reaches several millijoules for durations of 10's - 100's fs for 250 ps, 800 nm chirped pump pulses. We show that this prevents access to the nonlinear regime and limits the efficiency, and interpret the experimental results using slowly-varying-amplitude, current-averaged particle-in-cell simulations. We also propose methods for achieving higher efficiencies.close0

    High Current, High frequency ECRIS development program for LHC heavy ion beam application

    Get PDF
    A research program with the aim of producing pulsed currents with hitherto unequalled intensity of Pb27+, with length and repetition ratecompatible with those desired by CERN (1 mAe / 400 ms / 10 Hz in the context of future heavy ion collisions at LHC) is organised in acollaboration between CERN/GSI/CEA-Grenoble and IN2P3-ISNG.Two main experimental programs will be carried out : (i) tests with the LNS-Catania team on the SERSE superconducting source with a 28 GHzgyrotron, (ii) tests on a non-superconducting source (new source at Grenoble) with a 28 GHz gyrotron. For this purpose CEA/DRFMC hasborrowed from CEA a 28 GHz - 10 kW gyrotron transmitter.The project includes also the construction of a source body, by ISNG, with conventional coils and permanent magnets for working at the frequencyof about 28 GHz and biased up to 60 kV. This source called PHOENIX will run on a test bench at ISN. PHOENIX is an improvement of thepresent ECR4-14.5 GHz/CERN source, having a mirror ratio R=2 at 14.5 GHz, and R=1.7 at 28 GHz (possibly reaching 2.1 T on the axis of thesource), and with a plasma volume up to 2.5 larger.Experiments at 28 GHz will be performed on the SERSE source in Catania at INFN/LNS where both the axial and the hexapolar fields will bevaried so that the mirror ratio is continuously varied up to R=1.6 ; the SERSE source will be also operated at lower magnetic fields such as thosewhich can be produced by conventional magnets (less than 2 T axial field at injection - far from the 28 GHz High-B mode)

    Characterisation of Laser Wakefield Acceleration Efficiency with Octave Spanning Near-IR Spectrum Measurements

    Full text link
    We report on high efficiency energy transfer in a GeV-class laser wakefield accelerator. Both the transfer of energy from the laser to the plasma wakefield, and from the plasma to the accelerated electron beam were diagnosed experimentally by simultaneous measurement of the deceleration of laser photons and the accelerated electrons as a function of acceleration length. The extraction efficiency, which we define as the ratio of the energy gained by the electron beam to the energy lost by the self-guided laser mode, was maximised at 27Ā±227\pm2 % by tuning of the plasma density, plasma length and incident laser pulse compression. At higher densities, the laser was observed to fully redshift over an entire octave, from 800~nm to 1600~nm.Comment: 7 pages, 5 figure
    • ā€¦
    corecore