128 research outputs found

    Nitrogen uptake and distribution in annual ryegrass

    Get PDF
    Last updated: 6/9/200

    Nonpoint Source Phosphorus From Grazinglands

    Get PDF
    Last updated: 6/12/200

    Cycling of Geotube® Solids from Dairy Lagoons Through Turfgrass Sod

    Get PDF
    Polymer – Abbreviation for polyacrylamide is used in water purification to flocculate suspended organic matter. Although polyacrylamide is designated as a non-toxic additive by USDA, its building block, acrylamide, is a potential nerve toxin in humans and causes birth defects and cancer in animals. A concentration limit of 500 ppm acrylamide in polyacrylamide preparations has been established for water treatment applications. Geotube® solids – particulate matter collected from wastewater pumped from lagoon into semi-permeable fibrous sock. Lysimeter – Container in which the volume of soil used to grow plants is isolated hydrologically from surrounding soil to control and measure water and nutrient inputs and losses. Mineralization – Conversion of organic N to NH4+. Heterotrophic microorganisms use organic carbon compounds as an energy source for the conversion process

    The White Mountain Polarimeter Telescope and an Upper Limit on CMB Polarization

    Get PDF
    The White Mountain Polarimeter (WMPol) is a dedicated ground-based microwave telescope and receiver system for observing polarization of the Cosmic Microwave Background. WMPol is located at an altitude of 3880 meters on a plateau in the White Mountains of Eastern California, USA, at the Barcroft Facility of the University of California White Mountain Research Station. Presented here is a description of the instrument and the data collected during April through October 2004. We set an upper limit on EE-mode polarization of 14 μK\mu\mathrm{K} (95% confidence limit) in the multipole range 170<<240170<\ell<240. This result was obtained with 422 hours of observations of a 3 deg2\mathrm{deg}^2 sky area about the North Celestial Pole, using a 42 GHz polarimeter. This upper limit is consistent with EEEE polarization predicted from a standard Λ\Lambda-CDM concordance model.Comment: 35 pages. 12 figures. To appear in ApJ

    A synthetic lethal screen for Snail-induced enzalutamide resistance identifies JAK/STAT signaling as a therapeutic vulnerability in prostate cancer

    Get PDF
    Despite substantial improvements in the treatment landscape of prostate cancer, the evolution of hormone therapy-resistant and metastatic prostate cancer remains a major cause of cancer-related death globally. The mainstay of treatment for advanced prostate cancer is targeting of androgen receptor signaling, including androgen deprivation therapy plus second-generation androgen receptor blockade (e.g., enzalutamide, apalutamide, darolutamide), and/or androgen synthesis inhibition (abiraterone). While these agents have significantly prolonged the lives of patients with advanced prostate cancer, is nearly universal. This therapy resistance is mediated by diverse mechanisms, including both androgen receptor-dependent mechanisms, such as androgen receptor mutations, amplifications, alternative splicing, and amplification, as well as non-androgen receptor-mediated mechanisms, such as lineage plasticity toward neuroendocrine-like or epithelial-mesenchymal transition (EMT)-like lineages. Our prior work identified the EMT transcriptional regulator Snail as critical to hormonal therapy resistance and is commonly detected in human metastatic prostate cancer. In the current study, we sought to interrogate the actionable landscape of EMT-mediated hormone therapy resistant prostate cancer to identify synthetic lethality and collateral sensitivity approaches to treating this aggressive, therapy-resistant disease state. Using a combination of high-throughput drug screens and multi-parameter phenotyping by confluence imaging, ATP production, and phenotypic plasticity reporters of EMT, we identified candidate synthetic lethalities to Snail-mediated EMT in prostate cancer. These analyses identified multiple actionable targets, such as XPO1, PI3K/mTOR, aurora kinases, c-MET, polo-like kinases, and JAK/STAT as synthetic lethalities in Snail+ prostate cancer. We validated these targets in a subsequent validation screen in an LNCaP-derived model of resistance to sequential androgen deprivation and enzalutamide. This follow-up screen provided validation of inhibitors of JAK/STAT and PI3K/mTOR as therapeutic vulnerabilities for both Snail+ and enzalutamide-resistant prostate cancer

    Conversion of deoxynivalenol to 3-acetyldeoxynivalenol in barley-derived fuel ethanol co-products with yeast expressing trichothecene 3-O-acetyltransferases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The trichothecene mycotoxin deoxynivalenol (DON) may be concentrated in distillers dried grains with solubles (DDGS; a co-product of fuel ethanol fermentation) when grain containing DON is used to produce fuel ethanol. Even low levels of DON (≤ 5 ppm) in DDGS sold as feed pose a significant threat to the health of monogastric animals. New and improved strategies to reduce DON in DDGS need to be developed and implemented to address this problem. Enzymes known as trichothecene 3-<it>O-</it>acetyltransferases convert DON to 3-acetyldeoxynivalenol (3ADON), and may reduce its toxicity in plants and animals.</p> <p>Results</p> <p>Two <it>Fusarium </it>trichothecene 3-<it>O-</it>acetyltransferases (FgTRI101 and FfTRI201) were cloned and expressed in yeast (<it>Saccharomyces cerevisiae</it>) during a series of small-scale ethanol fermentations using barley (<it>Hordeum vulgare</it>). DON was concentrated 1.6 to 8.2 times in DDGS compared with the starting ground grain. During the fermentation process, FgTRI101 converted 9.2% to 55.3% of the DON to 3ADON, resulting in DDGS with reductions in DON and increases in 3ADON in the Virginia winter barley cultivars Eve, Thoroughbred and Price, and the experimental line VA06H-25. Analysis of barley mashes prepared from the barley line VA04B-125 showed that yeast expressing FfTRI201 were more effective at acetylating DON than those expressing FgTRI101; DON conversion for FfTRI201 ranged from 26.1% to 28.3%, whereas DON conversion for FgTRI101 ranged from 18.3% to 21.8% in VA04B-125 mashes. Ethanol yields were highest with the industrial yeast strain Ethanol Red<sup>®</sup>, which also consumed galactose when present in the mash.</p> <p>Conclusions</p> <p>This study demonstrates the potential of using yeast expressing a trichothecene 3-<it>O</it>-acetyltransferase to modify DON during commercial fuel ethanol fermentation.</p

    Reactive Oxygen Species Hydrogen Peroxide Mediates Kaposi's Sarcoma-Associated Herpesvirus Reactivation from Latency

    Get PDF
    Kaposi's sarcoma-associated herpesvirus (KSHV) establishes a latent infection in the host following an acute infection. Reactivation from latency contributes to the development of KSHV-induced malignancies, which include Kaposi's sarcoma (KS), the most common cancer in untreated AIDS patients, primary effusion lymphoma and multicentric Castleman's disease. However, the physiological cues that trigger KSHV reactivation remain unclear. Here, we show that the reactive oxygen species (ROS) hydrogen peroxide (H2O2) induces KSHV reactivation from latency through both autocrine and paracrine signaling. Furthermore, KSHV spontaneous lytic replication, and KSHV reactivation from latency induced by oxidative stress, hypoxia, and proinflammatory and proangiogenic cytokines are mediated by H2O2. Mechanistically, H2O2 induction of KSHV reactivation depends on the activation of mitogen-activated protein kinase ERK1/2, JNK, and p38 pathways. Significantly, H2O2 scavengers N-acetyl-L-cysteine (NAC), catalase and glutathione inhibit KSHV lytic replication in culture. In a mouse model of KSHV-induced lymphoma, NAC effectively inhibits KSHV lytic replication and significantly prolongs the lifespan of the mice. These results directly relate KSHV reactivation to oxidative stress and inflammation, which are physiological hallmarks of KS patients. The discovery of this novel mechanism of KSHV reactivation indicates that antioxidants and anti-inflammation drugs could be promising preventive and therapeutic agents for effectively targeting KSHV replication and KSHV-related malignancies

    History of ESL Pronunciation Teaching

    Get PDF
    This chapter tells the story of over 150 years in the teaching of English as a second language (ESL) pronunciation. An analysis of historical resources may reveal a reliable history of pronunciation teaching. A consistent theme within the historical record is that prior to the second half of the nineteenth century pronunciation received little attention in L2 classrooms. Beginning in the 1850s and continuing for the next 30 years, early innovators such as Berlitz, Gouin, Marcel, and Predergast were rejecting and transitioning away from classical approaches. A change that resulted in pronunciation teaching\u27s considerably more consequential second wave was the formation in Paris during the period 1886-1889 of the International Phonetic Association. The 1950s-1970s coincide with a slow rise of attention to innovations in how to teach pronunciation. If we may speculate on the future of ESL pronunciation teaching, there is every reason to feel optimistic
    corecore