256 research outputs found

    Monte Carlo studies of the ordering of the one-dimensional Heisenberg spin glass with long-range power-law interactions

    Full text link
    The nature of the ordering of the one-dimensional Heisenberg spin-glass model with a long-range power-law interaction is studied by extensive Monte Carlo simulations, with particular attention to the issue of the spin-chirality decoupling/coupling. Large system sizes up to L=4096L=4096 are studied. With varying the exponent σ\sigma describing the power-law interaction, we observe three distinct types of ordering regimes. For smaller σ\sigma, the spin and the chirality order at a common finite temperature with a common correlation-length exponent, exhibiting the standard spin-chirality coupling behavior. For intermediate σ\sigma, the chirality orders at a temperature higher than the spin, exhibiting the spin-chirality decoupling behavior. For larger σ\sigma, both the spin and the chirality order at zero temperature. We construct a phase diagram in the σ\sigma versus the temperature plane, and discuss implications of the results. Critical properties associated with both the chiral-glass and the spin-glass transitions are also determined.Comment: 28 pages, 26 figures, to appear in J. Phys. Soc. Jp

    Present and future use of antimicrobials in pigs in developing countries and case studies from Uganda and Vietnam

    Get PDF
    Demand for pork is growing rapidly in developing countries, and will be mostly met by intensive production. Although this can produce large quantities of affordable meat, it can have environmental, social and human health externalities. We report on recent studies conducted by ILRI and partners on antimicrobial use in pork production in developing countries and antimicrobial resistance (AMR) in pork

    Z_2-vortex ordering of the triangular-lattice Heisenberg antiferromagnet

    Full text link
    Ordering of the classical Heisenberg antiferromagnet on the triangular lattice is studied by means of a mean-field calculation, a scaling argument and a Monte Carlo simulation, with special attention to its vortex degree of freedom. The model exhibits a thermodynamic transition driven by the Z_2-vortex binding-unbinding, at which various thermodynamic quantities exhibit an essential singularity. The low-temperature state is a "spin-gel" state with a long but finite spin correlation length where the ergodicity is broken topologically. Implications to recent experiments on triangular-lattice Heisenberg antiferromagnets are discussed

    Theory of Exciton Recombination from the Magnetically Induced Wigner Crystal

    Full text link
    We study the theory of itinerant-hole photoluminescence of two-dimensional electron systems in the regime of the magnetically induced Wigner crystal. We show that the exciton recombination transition develops structure related to the presence of the Wigner crystal. The form of this structure depends strongly on the separation dd between the photo-excited hole and the plane of the two-dimensional electron gas. When dd is small compared to the magnetic length, additional peaks appear in the spectrum due to the recombination of exciton states with wavevectors equal to the reciprocal lattice vectors of the crystal. For dd larger than the magnetic length, the exciton becomes strongly confined to an interstitial site of the lattice, and the structure in the spectrum reflects the short-range correlations of the Wigner crystal. We derive expressions for the energies and the radiative lifetimes of the states contributing to photoluminescence, and discuss how the results of our analysis compare with experimental observations.Comment: 10 pages, no figures, uses Revtex and multicol.st

    Exciton swapping in a twisted graphene bilayer as a solid-state realization of a two-brane model

    Get PDF
    It is shown that exciton swapping between two graphene sheets may occur under specific conditions. A magnetically tunable optical filter is described to demonstrate this new effect. Mathematically, it is shown that two turbostratic graphene layers can be described as a "noncommutative" two-sheeted (2+1)-spacetime thanks to a formalism previously introduced for the study of braneworlds in high energy physics. The Hamiltonian of the model contains a coupling term connecting the two layers which is similar to the coupling existing between two braneworlds at a quantum level. In the present case, this term is related to a K-K' intervalley coupling. In addition, the experimental observation of this effect could be a way to assess the relevance of some theoretical concepts of the braneworld hypothesis.Comment: 15 pages, 3 figures, final version published in European Physical Journal

    Theory of Photoluminescence of the ν=1\nu=1 Quantum Hall State: Excitons, Spin-Waves and Spin-Textures

    Full text link
    We study the theory of intrinsic photoluminescence of two-dimensional electron systems in the vicinity of the ν=1\nu=1 quantum Hall state. We focus predominantly on the recombination of a band of initial ``excitonic states'' that are the low-lying energy states of our model at ν=1\nu=1. It is shown that the recombination of excitonic states can account for recent observations of the polarization-resolved spectra of a high-mobility GaAs quantum well. The asymmetric broadening of the spectral line in the σ−\sigma_- polarization is explained to be the result of the ``shake-up'' of spin-waves upon radiative recombination of excitonic states. We derive line shapes for the recombination of excitonic states in the presence of long-range disorder that compare favourably with the experimental observations. We also discuss the stabilities and recombination spectra of other (``charged'') initial states of our model. An additional high-energy line observed in experiment is shown to be consistent with the recombination of a positively-charged state. The recombination spectrum of a negatively-charged initial state, predicted by our model but not observed in the present experiments, is shown to provide a direct measure of the formation energy of the smallest ``charged spin-texture'' of the ν=1\nu=1 state.Comment: 23 pages, 7 postscript figures included. Revtex with epsf.tex and multicol.sty. The revised version contains slightly improved numerical results and a few additional discussions of the result

    Hidden attractors in fundamental problems and engineering models

    Full text link
    Recently a concept of self-excited and hidden attractors was suggested: an attractor is called a self-excited attractor if its basin of attraction overlaps with neighborhood of an equilibrium, otherwise it is called a hidden attractor. For example, hidden attractors are attractors in systems with no equilibria or with only one stable equilibrium (a special case of multistability and coexistence of attractors). While coexisting self-excited attractors can be found using the standard computational procedure, there is no standard way of predicting the existence or coexistence of hidden attractors in a system. In this plenary survey lecture the concept of self-excited and hidden attractors is discussed, and various corresponding examples of self-excited and hidden attractors are considered

    Chirality scenario of the spin-glass ordering

    Full text link
    Detailed account is given of the chirality scenario of experimental spin-glass transitions. In this scenario, the spin glass order of weakly anisotropic Heisenberg-like spin-glass magnets including canonical spin glasses are essentially chirality driven. Recent numerical and experimental results are discussed in conjunction with this scenario.Comment: Submitted to J. Phys. Soc. Japan "Special Issue on Frustration

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Receptor Complementation and Mutagenesis Reveal SR-BI as an Essential HCV Entry Factor and Functionally Imply Its Intra- and Extra-Cellular Domains

    Get PDF
    HCV entry into cells is a multi-step and slow process. It is believed that the initial capture of HCV particles by glycosaminoglycans and/or lipoprotein receptors is followed by coordinated interactions with the scavenger receptor class B type I (SR-BI), a major receptor of high-density lipoprotein (HDL), the CD81 tetraspanin, and the tight junction protein Claudin-1, ultimately leading to uptake and cellular penetration of HCV via low-pH endosomes. Several reports have indicated that HDL promotes HCV entry through interaction with SR-BI. This pathway remains largely elusive, although it was shown that HDL neither associates with HCV particles nor modulates HCV binding to SR-BI. In contrast to CD81 and Claudin-1, the importance of SR-BI has only been addressed indirectly because of lack of cells in which functional complementation assays with mutant receptors could be performed. Here we identified for the first time two cell types that supported HCVpp and HCVcc entry upon ectopic SR-BI expression. Remarkably, the undetectable expression of SR-BI in rat hepatoma cells allowed unambiguous investigation of human SR-BI functions during HCV entry. By expressing different SR-BI mutants in either cell line, our results revealed features of SR-BI intracellular domains that influence HCV infectivity without affecting receptor binding and stimulation of HCV entry induced by HDL/SR-BI interaction. Conversely, we identified positions of SR-BI ectodomain that, by altering HCV binding, inhibit entry. Finally, we characterized alternative ectodomain determinants that, by reducing SR-BI cholesterol uptake and efflux functions, abolish HDL-mediated infection-enhancement. Altogether, we demonstrate that SR-BI is an essential HCV entry factor. Moreover, our results highlight specific SR-BI determinants required during HCV entry and physiological lipid transfer functions hijacked by HCV to favor infection
    • …
    corecore