144 research outputs found

    Interactions between Small Heat Shock Protein Subunits and Substrate in Small Heat Shock Protein-Substrate Complexes

    Get PDF
    Small heat shock proteins (sHSPs) are dynamic oligomeric proteins that bind unfolding proteins and protect them from irreversible aggregation. This binding results in the formation of sHSP-substrate complexes from which substrate can later be refolded. Interactions between sHSP and substrate in sHSP-substrate complexes and the mechanism by which substrate is transferred to ATP-dependent chaperones for refolding are poorly defined. We have established C-terminal affinity-tagged sHSPs from a eukaryote (pea HSP18.1) and a prokaryote (Synechocystis HSP16.6) as tools to investigate these issues. We demonstrate that sHSP subunit exchange for HSP18.1 and HSP16.6 is temperature-dependent and rapid at the optimal growth temperature for the organism of origin. Increasing the ratio of sHSP to substrate during substrate denaturation decreased sHSP-substrate complex size, and accordingly, addition of substrate to pre-formed sHSP-substrate complexes increased complex size. However, the size of pre-formed sHSP-substrate complexes could not be reduced by addition of more sHSP, and substrate could not be observed to transfer to added sHSP, although added sHSP subunits continued to exchange with subunits in sHSPsubstrate complexes. Thus, although some number of sHSP subunits within complexes remain dynamic and may be important for complex structure/solubility, association of substrate with the sHSP does not appear to be similarly dynamic. These observations are consistent with a model in which ATP-dependent chaperones associate directly with sHSP-bound substrate to initiate refolding

    Ribulose 1,5-Bisphosphate Carboxylase Synthesis during Heat Shock

    Full text link

    Auxin efflux controls orderly nucellar degeneration and expansion of the female gametophyte in Arabidopsis

    Get PDF
    The nucellus tissue in flowering plants provides nutrition for the development of the female gametophyte (FG) and young embryo. The nucellus degenerates as the FG develops, but the mechanism controlling the coupled process of nucellar degeneration and FG expansion remains largely unknown. The degeneration process of the nucellus and spatiotemporal auxin distribution in the developing ovule before fertilization were investigated in Arabidopsis thaliana. Nucellar degeneration before fertilization occurs through vacuolar cell death and in an ordered degeneration fashion. This sequential nucellar degeneration is controlled by the signalling molecule auxin. Auxin efflux plays the core role in precisely controlling the spatiotemporal pattern of auxin distribution in the nucellus surrounding the FG. The auxin efflux carrier PIN1 transports maternal auxin into the nucellus while PIN3/PIN4/PIN7 further delivers auxin to degenerating nucellar cells and concurrently controls FG central vacuole expansion. Notably, auxin concentration and auxin efflux are controlled by the maternal tissues, acting as a key communication from maternal to filial tissue

    Interrogating Plant Cell Culture Library for Novel Antimicrobial Agents

    Get PDF
    The Plant Cell Culture Library (PCCL) at UMass Amherst contains more than 2,200 live plant cell cultures, representing diverse plant species from around the world. The availability of this collection offers a rich resource for us to discover bioactive phytochemicals and uncover their mechanisms of action. Using data-mining surveys of bioactive plant extracts, I have organized subsets of PCCL cell lines that are likely to possess antifungal, antibacterial, antiviral, anthelmintic, anti-trypanosomal, or anticancer properties, which prove to be useful when deciding which species to screen first against a specific pathogen. Another distinct advantage of using the live plant cells in this research is the ability to stimulate the biosynthesis of pathogen-specific phytochemicals upon simulation of an attack (elicitation) by the microorganism in question. This could be accomplished by pathogen homogenates or plant hormones responsible for mounting defenses to infection. Over the past six months, I have been working to optimize elicitation, lysis, and extraction conditions for obtaining high-throughput screening materials to be used against variable pathogens. Equipped with crude extracts from appropriately elicited cells, I am collaborating with a multidisciplinary team of UMass scientists to develop and implement high-throughput screening protocols for profiling a large number of plant-derived materials against various pathogens. Recently, I have screened a small pool (40) of extracts derived from cell lines with predicted anti-fungal properties against the highly resistant strain of fungus Fusarium oxysporum, one of the causal agents of an opportunistic infection often seen in immunocompromised patients known as fusariosis. Gratifyingly, I have found several plant species that produced specialized metabolites with better antifungal activity than the leading antibiotic against F. oxysporum, Amphotericin B, validating this line of antimicrobial research. We are also actively reaching out to other academic labs partners to form partnerships in diverse antimicrobial research venues

    The Identity of Proteins Associated with a Small Heat Shock Protein during Heat Stress \u3ci\u3ein Vivo\u3c/i\u3e Indicates That These Chaperones Protect a Wide Range of Cellular Functions

    Get PDF
    The small heat shock proteins (sHSPs) are a ubiquitous class of ATP-independent chaperones believed to prevent irreversible protein aggregation and to facilitate subsequent protein renaturation in cooperation with ATP-dependent chaperones. Although sHSP chaperone activity has been studied extensively in vitro, understanding the mechanism of sHSP function requires identification of proteins that are sHSP substrates in vivo. We have used both immunoprecipitation and affinity chromatography to recover 42 proteins that specifically interact with Synechocystis Hsp16.6 in vivo during heat treatment. These proteins can all be released from Hsp16.6 by the ATP-dependent activity of DnaK and cochaperones and are heat-labile. Thirteen of the putative substrate proteins were identified by mass spectrometry and reveal the potential for sHSPs to protect cellular functions as diverse as transcription, translation, cell signaling, and secondary metabolism. One of the putative substrates, serine esterase, was purified and tested directly for interaction with purified Hsp16.6. Hsp16.6 effectively formed soluble complexes with serine esterase in a heat-dependent fashion, thereby preventing formation of insoluble serine esterase aggregates. These data offer critical insights into the characteristics of native sHSP substrates and extend and provide in vivo support for the chaperone model of sHSP function

    The Identity of Proteins Associated with a Small Heat Shock Protein during Heat Stress \u3ci\u3ein Vivo\u3c/i\u3e Indicates That These Chaperones Protect a Wide Range of Cellular Functions

    Get PDF
    The small heat shock proteins (sHSPs) are a ubiquitous class of ATP-independent chaperones believed to prevent irreversible protein aggregation and to facilitate subsequent protein renaturation in cooperation with ATP-dependent chaperones. Although sHSP chaperone activity has been studied extensively in vitro, understanding the mechanism of sHSP function requires identification of proteins that are sHSP substrates in vivo. We have used both immunoprecipitation and affinity chromatography to recover 42 proteins that specifically interact with Synechocystis Hsp16.6 in vivo during heat treatment. These proteins can all be released from Hsp16.6 by the ATP-dependent activity of DnaK and cochaperones and are heat-labile. Thirteen of the putative substrate proteins were identified by mass spectrometry and reveal the potential for sHSPs to protect cellular functions as diverse as transcription, translation, cell signaling, and secondary metabolism. One of the putative substrates, serine esterase, was purified and tested directly for interaction with purified Hsp16.6. Hsp16.6 effectively formed soluble complexes with serine esterase in a heat-dependent fashion, thereby preventing formation of insoluble serine esterase aggregates. These data offer critical insights into the characteristics of native sHSP substrates and extend and provide in vivo support for the chaperone model of sHSP function
    • …
    corecore