69 research outputs found

    Bionomic response of Aedes aegypti to two future climate change scenarios in far north Queensland, Australia: implications for dengue outbreaks

    No full text
    BACKGROUND: Dengue viruses are transmitted by anthropophilic mosquitoes and infect approximately 50 million humans annually. To investigate impacts of future climate change on dengue virus transmission, we investigated bionomics of the mosquito vector, Aedes aegypti. METHODS: Using a dynamic life table simulation model (the Container inhabiting mosquito simulation CIMSiM) and statistically downscaled daily values for future climate, we assessed climate change induced changes to mosquito bionomics. Simulations of Ae. aegypti populations for current (1991-2011) and future climate (2046-2065) were conducted for the city of Cairns, Queensland, the population centre with most dengue virus transmission in Australia. Female mosquito abundance, wet weight, and the extrinsic incubation period for dengue virus in these mosquitoes were estimated for current and future climate (MPI ECHAM 5 model, B1 and A2 emission scenarios). RESULTS: Overall mosquito abundance is predicted to change, but results were equivocal for different climate change scenarios. Aedes aegypti abundance is predicted to increase under the B1, but decrease under the A2 scenario. Mosquitoes are predicted to have a smaller body mass in a future climate. Shorter extrinsic incubation periods are projected. CONCLUSIONS: It is therefore unclear whether dengue risk would increase or decrease in tropical Australia with climate change. Our findings challenge the prevailing view that a future, warmer climate will lead to larger mosquito populations and a definite increase in dengue transmission. Whilst general predictions can be made about future mosquito borne disease incidence, cautious interpretation is necessary due to interaction between local environment, human behaviour and built environment, dengue virus, and vectors.This project was funded by the Commonwealth Department for Climate Change, via the NH&MRC (project 1003371)

    Geostatistical mapping of the seasonal spread of under-reported dengue cases in Bangladesh

    Get PDF
    Geographical mapping of dengue in resource-limited settings is crucial for targeting control interventions but is challenging due to the problem of zero-inflation because many cases are not reported. We developed a negative binomial generalised linear mixed effect model accounting for zero-inflation, spatial, and temporal random effects to investigate the spatial variation in monthly dengue cases in Bangladesh. The model was fitted to the district-level (64 districts) monthly reported dengue cases aggregated over the period 2000 to 2009 and Bayesian inference was performed using the integrated nested Laplace approximation. We found that mean monthly temperature and its interaction with mean monthly diurnal temperature range, lagged by two months were significantly associated with dengue incidence. Mean monthly rainfall at two months lag was positively associated with dengue incidence. Densely populated districts and districts bordering India or Myanmar had higher incidence than others. The model estimated that 92% of the annual dengue cases occurred between August and September. Cases were identified across the country with 94% in the capital Dhaka (located almost in the middle of the country). Less than half of the affected districts reported cases as observed from the surveillance data. The proportion reported varied by month with a higher proportion reported in high-incidence districts, but dropped towards the end of high transmission season.SS was supported by The Australian National University Higher Degree Research Merit Scholarship (http://www.anu.edu.au/students/ scholarships-support/anu-university-researchscholarships

    Bionomic response of Aedes aegypti to two future climate change scenarios in far north Queensland, Australia: implications for dengue outbreaks

    Get PDF
    Background: Dengue viruses are transmitted by anthropophilic mosquitoes and infect approximately 50 million humans annually. To investigate impacts of future climate change on dengue virus transmission, we investigated bionomics of the mosquito vector, Aedes aegypti. Methods: Using a dynamic life table simulation model (the Container inhabiting mosquito simulation CIMSiM) and statistically downscaled daily values for future climate, we assessed climate change induced changes to mosquito bionomics. Simulations of Ae. aegypti populations for current (1991-2011) and future climate (2046-2065) were conducted for the city of Cairns, Queensland, the population centre with most dengue virus transmission in Australia. Female mosquito abundance, wet weight, and the extrinsic incubation period for dengue virus in these mosquitoes were estimated for current and future climate (MPI ECHAM 5 model, B1 and A2 emission scenarios). Results: Overall mosquito abundance is predicted to change, but results were equivocal for different climate change scenarios. Aedes aegypti abundance is predicted to increase under the B1, but decrease under the A2 scenario. Mosquitoes are predicted to have a smaller body mass in a future climate. Shorter extrinsic incubation periods are projected. Conclusions: It is therefore unclear whether dengue risk would increase or decrease in tropical Australia with climate change. Our findings challenge the prevailing view that a future, warmer climate will lead to larger mosquito populations and a definite increase in dengue transmission. Whilst general predictions can be made about future mosquito borne disease incidence, cautious interpretation is necessary due to interaction between local environment, human behaviour and built environment, dengue virus, and vectors

    Epidemiology of dengue in a high-income country: a case study in Queensland, Australia

    Get PDF
    Background: Australia is one of the few high-income countries where dengue transmission regularly occurs. Dengue is a major health threat in North Queensland (NQ), where the vector Aedes aegypti is present. Whether NQ should be considered as a dengue endemic or epidemic region is an ongoing debate. To help address this issue, we analysed the characteristics of locally-acquired (LA) and imported dengue cases in NQ through time and space. We describe the epidemiology of dengue in NQ from 1995 to 2011, to identify areas to target interventions. We also investigated the timeliness of notification and identified high-risk areas. Methods: Data sets of notified cases and viraemic arrivals from overseas were analysed. We developed a time series based on the LA cases and performed an analysis to capture the relationship between incidence rate and demographic factors. Spatial analysis was used to visualise incidence rates through space and time. Results: Between 1995 and 2011, 93.9% of reported dengue cases were LA, mainly in the 'Cairns and Hinterland' district; 49.7% were males, and the mean age was 38.0 years old. The sources of imported cases (6.1%) were Indonesia (24.6%), Papua New Guinea (23.2%), Thailand (13.4%), East Timor (8.9%) and the Philippines (6.7%), consistent with national data. Travellers importing dengue were predominantly in the age groups 30-34 and 45-49 years old, whereas the age range of patients who acquired dengue locally was larger. The number of LA cases correlated with the number of viraemic importations. Duration of viraemia of public health importance was positively correlated with the delay in notification. Dengue incidence varied over the year and was typically highest in summer and autumn. However, dengue activity has been reported in winter, and a number of outbreaks resulted in transmission year-round. Conclusions: This study emphasizes the importance of delay in notification and consequent duration of viraemia of public health importance for dengue outbreak duration. It also highlights the need for targeted vector control programmes and surveillance of travellers at airports as well as regularly affected local areas. Given the likely increase in dengue transmission with climate change, endemicity in NQ may become a very real possibility

    Assessment of vector/host contact: comparison of animal-baited traps and UV-light/suction trap for collecting Culicoides biting midges (Diptera: Ceratopogonidae), vectors of Orbiviruses

    Get PDF
    BACKGROUND The emergence and massive spread of bluetongue in Western Europe during 2006-2008 had disastrous consequences for sheep and cattle production and confirmed the ability of Palaearctic Culicoides (Diptera: Ceratopogonidae) to transmit the virus. Some aspects of Culicoides ecology, especially host-seeking and feeding behaviors, remain insufficiently described due to the difficulty of collecting them directly on a bait animal, the most reliable method to evaluate biting rates.Our aim was to compare typical animal-baited traps (drop trap and direct aspiration) to both a new sticky cover trap and a UV-light/suction trap (the most commonly used method to collect Culicoides). METHODS/RESULTS Collections were made from 1.45 hours before sunset to 1.45 hours after sunset in June/July 2009 at an experimental sheep farm (INRA, Nouzilly, Western France), with 3 replicates of a 4 sitesĂ—4 traps randomized Latin square using one sheep per site. Collected Culicoides individuals were sorted morphologically to species, sex and physiological stages for females. Sibling species were identified using a molecular assay. A total of 534 Culicoides belonging to 17 species was collected. Abundance was maximal in the drop trap (232 females and 4 males from 10 species) whereas the diversity was the highest in the UV-light/suction trap (136 females and 5 males from 15 species). Significant between-trap differences abundance and parity rates were observed. CONCLUSIONS Only the direct aspiration collected exclusively host-seeking females, despite a concern that human manipulation may influence estimation of the biting rate. The sticky cover trap assessed accurately the biting rate of abundant species even if it might act as an interception trap. The drop trap collected the highest abundance of Culicoides and may have caught individuals not attracted by sheep but by its structure. Finally, abundances obtained using the UV-light/suction trap did not estimate accurately Culicoides biting rate.This study was funded partly by CIRAD and partly by the Ministry of Agriculture, Food, Fishing and Rural Affairs

    Assessing the threat of chikungunya virus emergence in Australia

    Get PDF
    Background: Chikungunya virus (CHIKV) is a major threat to Australia given the distribution of competent vectors, and the large number of travellers returning from endemic regions. We describe current knowledge of CHIKV importations into Australia, and quantify reported viraemic cases, with the aim of facilitating the formulation of public health policy and ensuring maintenance of blood safety

    Host-Seeking Activity of Bluetongue Virus Vectors: Endo/Exophagy and Circadian Rhythm of Culicoides in Western Europe

    No full text
    Feeding success of free-living hematophagous insects depends on their ability to be active when hosts are available and to reach places where hosts are accessible. When the hematophagous insect is a vector of pathogens, determining the components of host-seeking behavior is of primary interest for the assessment of transmission risk. Our aim was to describe endo/exophagy and circadian host-seeking activity of Palaearctic Culicoides species, which are major biting pests and arbovirus vectors, using drop traps and suction traps baited with four sheep, as bluetongue virus hosts. Collections were carried out in the field, a largely-open stable and an enclosed stable during six collection periods of 24 hours in April/May, in late June and in September/October 2010 in western France. A total of 986 Culicoides belonging to 13 species, mainly C. brunnicans and C. obsoletus, was collected on animal baits. Culicoides brunnicans was clearly exophagic, whereas C. obsoletus was able to enter stables. Culicoides brunnicans exhibited a bimodal pattern of host-seeking activity with peaks just after sunrise and sunset. Culicoides obsoletus was active before sunset in spring and autumn and after sunset in summer, thus illustrating influence of other parameters than light, especially temperature. Description of host-seeking behaviors allowed us to discuss control strategies for transmission of Culicoides-borne pathogens, such as bluetongue virus. However, practical vector-control recommendations are difficult to provide because of the variation in the degree of endophagy and time of host-seeking activity.This study was funded by CIRAD, by the Ministe`re de l’agriculture, de l’alimentation, de la peˆche, de la ruralite´ et de l’ame´nagement du terroire and by the EU FP7-HEALTH-2010-single-stage grant 261504 EDENext. This paper is catalogued by the EDENext Steering Committee as EDENext032 (http://www.edenext. eu). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional external funding received for this study

    Chikungunya virus in Asia - Pacific: a systematic review.

    Get PDF
    Chikungunya virus (CHIKV) is a mosquito-borne pathogen that causes an acute febrile syndrome and severe, debilitating rheumatic disorders in humans that may persist for months. CHIKV's presence in Asia dates from at least 1954, but its epidemiological profile in the region remains poorly understood. We systematically reviewed CHIKV emergence, epidemiology, clinical features, atypical manifestations and distribution of virus genotypes, in 47 countries from South East Asia (SEA) and the Western Pacific Region (WPR) during the period 1954-2017. Following the Cochrane Collaboration guidelines, Pubmed and Scopus databases, surveillance reports available in the World Health Organisation (WHO) and government websites were systematically reviewed. Of the 3504 records identified, 461 were retained for data extraction. Although CHIKV has been circulating in Asia almost continuously since the 1950s, it has significantly expanded its geographic reach in the region from 2005 onwards. Most reports identified in the review originated from India. Although all ages and both sexes can be affected, younger children and the elderly are more prone to severe and occasionally fatal forms of the disease, with child fatalities recorded since 1963 from India. The most frequent clinical features identified were arthralgia, rash, fever and headache. Both the Asian and East-Central-South African (ECSA) genotypes circulate in SEA and WPR, with ECSA genotype now predominant. Our findings indicate a substantial but poorly documented burden of CHIKV infection in the Asia-Pacific region. An evidence-based consensus on typical clinical features of chikungunya could aid in enhanced diagnosis and improved surveillance of the disease
    • …
    corecore