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Abstract

Geographical mapping of dengue in resource-limited settings is crucial for targeting control

interventions but is challenging due to the problem of zero-inflation because many cases

are not reported. We developed a negative binomial generalised linear mixed effect model

accounting for zero-inflation, spatial, and temporal random effects to investigate the spatial

variation in monthly dengue cases in Bangladesh. The model was fitted to the district-level

(64 districts) monthly reported dengue cases aggregated over the period 2000 to 2009 and

Bayesian inference was performed using the integrated nested Laplace approximation. We

found that mean monthly temperature and its interaction with mean monthly diurnal temper-

ature range, lagged by two months were significantly associated with dengue incidence.

Mean monthly rainfall at two months lag was positively associated with dengue incidence.

Densely populated districts and districts bordering India or Myanmar had higher incidence

than others. The model estimated that 92% of the annual dengue cases occurred between

August and September. Cases were identified across the country with 94% in the capital

Dhaka (located almost in the middle of the country). Less than half of the affected districts

reported cases as observed from the surveillance data. The proportion reported varied by

month with a higher proportion reported in high-incidence districts, but dropped towards the

end of high transmission season.

Author summary

A better understanding of spatial and temporal variation in dengue risk is invaluable since

it guides intervention strategies and facilitates effective health resource allocation. Trans-

mission of dengue depends on the distribution and abundance of the mosquito vectors

which are sensitive to climatic and environmental factors including temperature, rainfall,

and population density. By modelling dengue-climate relationships, the burden of dengue
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can be estimated in locations where data on transmission are not available permitting

identification of high-risk areas. This reveals the extent of under-reporting in dengue sur-

veillance data in resource-limited countries which is essential to estimating the changing

burden of dengue.

Introduction

Dengue is a neglected tropical disease caused by the dengue virus (DENV) and is transmitted

by female Aedes mosquitoes, predominantly Aedes aegypti and Aedes albopictus. The severe

forms of the disease are potentially fatal. The World Health Organization (WHO) estimates

that about 52% of the people at risk of dengue worldwide live in 10 countries of the WHO

South-East Asia Region [1]. Bangladesh, located in South Asia and surrounded by India and

Myanmar (Fig 1) where dengue is endemic, experienced its first epidemic of dengue in 2000

[2]. Since then cases have been reported every year, most commonly among adults and older

children living in metropolitan cities [3]. Of the 64 Bangladeshi districts (Bangladesh’s second

largest administrative unit), 29 reported dengue cases between 2000 and 2009, with Dhaka

consistently reporting the largest number of cases [4]. Heterogeneity in the distribution of hos-

pitals across the country and differentials in treatment-seeking behaviour based on location

are likely to cause under-reporting [3]. However, despite no effective control program being

introduced and no changes in surveillance until 2010 when serological confirmation was

Fig 1. Location of Bangladesh (left) and district-level map of Bangladesh with 35 weather stations marked with a black dot

(right). The figure was produced using ArcGIS 10.5.1 (ESRI, Redlands, California).

https://doi.org/10.1371/journal.pntd.0006947.g001

Spatio-temporal mapping of dengue in Bangladesh

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006947 November 15, 2018 2 / 13

Funding: SS was supported by The Australian

National University Higher Degree Research Merit

Scholarship (http://www.anu.edu.au/students/

scholarships-support/anu-university-research-

scholarships). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pntd.0006947.g001
https://doi.org/10.1371/journal.pntd.0006947
http://www.anu.edu.au/students/scholarships-support/anu-university-research-scholarships
http://www.anu.edu.au/students/scholarships-support/anu-university-research-scholarships
http://www.anu.edu.au/students/scholarships-support/anu-university-research-scholarships


mandated for case reporting, nationally reported cases have declined since 2002 [3]. This

might be partially attributable to increased prevalence of immunity and reduction in mosquito

breeding sites resulting from public awareness [3]. However, there is considerable under-

reporting inherent in the passive hospital-based surveillance system [3]. A study investigating

the global distribution of dengue burden estimated an average of 4,097,833 symptomatic infec-

tions (95% Bayesian credible interval: 2,952,879–5,608,456) occurred in Bangladesh in 2010

[5] but only 409 were reported to authorities [4].

Climatic factors (mainly temperature and rainfall) influence the survival and development

rate of vector and virus. The aquatic larval and pupal stages of the Aedes mosquitoes require

fresh water. Outdoor artificial containers filled with rain water serve as breeding sites [6].

Average temperature, as well as diurnal temperature range (DTR, the difference between daily

maximum and minimum temperature), influence mosquito development, the mosquito biting

rate, the extrinsic incubation period, and vector-virus-host interaction [7–10].

Climatic similarity and the movement of viraemic individuals in geographically neighbour-

ing areas introduce spatial correlation in dengue incidence [11,12] and might lead to spurious

model-based incidence estimates if ignored. Bayesian geostatistical modelling approaches are

powerful for disease mapping, explicitly accounting for spatial correlation in disease data while

incorporating uncertainty in data and model parameters [13,14]. Within a Bayesian paradigm,

inference about model parameters is based on the posterior distribution derived from the com-

bination of data and pre-existing knowledge of parameter values, and therefore does not require

a large sample size assumption as does the frequentist approach. Therefore, more robust esti-

mates can be obtained when the disease is rare [15] or data on case numbers are limited.

Regional variation in dengue must be studied to allocate resources proportionate to burden

but this has not been done in Bangladesh. The only spatial mapping study of dengue in Bangla-

desh identified Dhaka as the most likely cluster for dengue transmission during 2000–2009

with a small number of secondary clusters in the southern part of the country in 2000 [16].

However, under-reporting was not accounted for, nor were potential causes of geographical

variation in dengue transmission (such as climate and socio-demographic factors) considered.

Our aim was to produce maps of the monthly spatial variation in dengue incidence at the dis-

trict-level in Bangladesh in relation to climatic and demographic factors with adjustment for

under-reporting. The resulting maps can facilitate the efficient distribution of vector control

interventions to areas of highest need at the appropriate time. The method is useful for identi-

fying locations where DENV transmission occurs but incidence data are lacking.

Materials and methods

Ethics statement

The study was approved by The Australian National University Human Research Ethics Com-

mittee. National dengue surveillance data were anonymised.

Study area

Bangladesh has a hot, humid, tropical climate with monsoons occurring during June to Sep-

tember. Monsoon rainfall, about four-fifths of the mean annual rainfall, ranges from 1,527mm

in the west to 4,197mm in the east, and the mean monthly monsoon temperature of 29˚C aver-

aged across the country is generally suitable for dengue transmission.

High population density (964 people per square kilometre in 2011) and unplanned urbani-

sation leading to over-crowding in divisional cities with inadequate water supply, and ineffi-

cient drainage and waste disposal increase risk for dengue since the vector mosquitoes breed

in water storage containers in and around houses [6,17,18].

Spatio-temporal mapping of dengue in Bangladesh
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Data

Dengue notification data, consisting of suspected, probable, and confirmed cases reported to

the Directorate General of Health Services between January 2000 and December 2009 were

analysed. Under-ascertainment of symptomatic dengue cases is highly likely since the passive

surveillance system only reports cases admitted to hospital [3]. Daily rainfall (mm), and mini-

mum and maximum temperatures (˚C) measured from 35 stations were sourced from the

Bangladesh Meteorological Department with around 2, 3, and 3% missing data, respectively.

Diurnal temperature range (DTR) was calculated from the daily maximum and minimum

temperatures. Weather values for days with missing data were filled by averaging data from

adjacent days. Monthly averages were then calculated from daily records. Missing values for

months were supplemented with the average of non-missing values from three neighbouring

stations. Bayesian kriging [19] was used to interpolate weather values in districts without a sta-

tion. Mean monthly rainfall, mean monthly temperature, mean monthly DTR, and monthly

total dengue cases over the 10 years were then aggregated by month and used in the model

development discussed below.

The population density (people/km2) for each district was estimated by dividing the district

population by the district area (km2). The monthly population of each district were calculated

by linear interpolation between population estimates from the 1991, 2001, and 2011 census

data of the Bangladesh Bureau of Statistics [20].

Model formulation

More than half of Bangladeshi districts did not report any dengue cases during the study

period 2000 to 2009. It was unclear whether these missing values corresponded to true zeros or

a lack of reporting, so we used a zero-inflated model which allows for two different interpreta-

tions for the occurrence of zero cases; either no case occurred, or cases occurred but were not

reported.

To model the spatio-temporal pattern of dengue, district-wise dengue notification data

aggregated by month over the period 2000 to 2009 were modelled via a negative binomial gen-

eralised linear mixed effect model with a logarithmic link function and the population of the

districts as an offset. Let yit be the number of reported dengue cases for the ith (i = 1, 2,. . ., 64)

district in the tth (t = 1, 2,. . ., 12) month. Preliminary non-spatial analysis indicated that the

following factors should be included in the analysis: mean monthly temperature, mean

monthly DTR, interaction between mean monthly temperature and DTR, and mean monthly

rainfall at lag one and two months, and population density [21]. The variable “Border” indicat-

ing whether a district bordered India or Myanmar was included in the model. This variable

was used as a proxy for movement across borders with neighbouring dengue endemic coun-

tries. An indicator for outbreak months with case numbers exceeding the 10-year mean plus

two standard deviations was added. Population age structure which is approximately the same

across the districts was not considered [22]. The generalised linear mixed effect model is speci-

fied by:

logðmitÞ ¼ logðPopulationitÞ þ aþ b1Ti;t� 1 þ b2Ti;t� 2 þ b3DTRi;t� 1 þ b4DTRi;t� 2

þb5ðTi;t� 1 � DTRi;t� 1Þ þ b6ðTi;t� 2 � DTRi;t� 2Þ þ b7Ri;t� 1 þ b8Ri;t� 2

þb9 � Borderi þ b10 � Outbreakit þ b11 � Popdenit þ ;i þ ARð1Þt;

i ¼ 1; 2; . . . ; 64 and t ¼ 1; 2; . . . ; 12

where μit denotes the mean dengue counts for the ith district in the tth month. T, DTR, (T �

DTR), and R, are the district wise mean monthly values of temperature, diurnal temperature
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range, interaction between temperature and diurnal temperature range, and rainfall. AR(1)t is

a first order autoregressive month effect that captures the correlation in dengue cases between

consecutive months. ;i represents the spatially structured random effects at district-level that

take into account the spatial dependency in dengue cases by assuming a Matérn covariance

using the stochastic partial differential equations (SPDE) approach [23]. All continuous covari-

ates were standardised (zero mean and variance one) to ensure that the influence of each

covariate parameter was comparable. The model fitting was done using the R-package Inte-

grated Nested Laplace Approximation (INLA) [24].

Following a Bayesian model specification, prior distributions were assigned to model

parameters. Independent diffuse Gaussian priors (with mean 0, precision 1 × 10−3) were cho-

sen for the intercept (α) and regression coefficients (β) to allow the data to predominate in cal-

culating the posterior distributions. The precision parameter for the random effect was

assigned a logGamma (1, 0.00005) prior.

The deviance information criteria (DIC) was used to check the goodness of fit of three

zero-inflated negative binomial models (ZINB) developed sequentially as a temporal model, a

spatio-temporal random effects model, and a spatio-temporal model without any fixed effect

covariates. A low DIC value is indicative of the best trade-off between model fit and complexity

of the model.

Results

Table 1 displays parameter estimates from the three ZINB models. The spatio-temporal full

model fitted the data best as evidenced by the lowest DIC (1079.44 vs 1099.54 and 1132.55). Of

all the climatic variables, mean monthly temperature, its interaction with DTR, and mean

monthly rainfall at lag two months showed significant associations with dengue incidence.

Average temperature had a positive relationship with dengue (β2 = 3.81; 95% highest posterior

density [HPD] credible interval [CrI]: 1.63, 6.04), while it’s negative interaction (β6 = -1.73;

95% HPD CrI: -3.13, -0.36) with DTR indicates that increasing temperature and decreasing

DTR is associated with increased dengue incidence. Mean monthly rainfall at two months lag

showed a positive relationship (β8 = 1.22; 95% HPD CrI: 0.19, 2.26) with dengue. Population

density was significantly (β11 = 0.69; 95% HPD CrI: 0.38, 1.03) associated with dengue. Dis-

tricts not adjoining the borders with India or Myanmar were found to have significantly lower

incidence compared with adjacent districts. The posterior density plots of fixed effect covari-

ates are shown in Fig 2.

A zero-inflation parameter with mean 0.08 (95% HPD CrI: 0.06, 0.10) confirms significant

zero-inflation in reported dengue data. The Moran’s index (0.12; p-value<0.0001) provided

significant evidence against the null hypothesis of zero spatial autocorrelation in dengue cases

in Bangladesh. Significance of the spatial effects were evident from the estimates of tau and

kappa.

Fig 3 shows the spatial variation in monthly aggregated dengue cases reported over 2000–

2009, compared with the corresponding fitted values obtained from the spatio-temporal full

model. The model clearly captures the spatial variation between months with an increasing

trend in case numbers from June with the highest in August. Southern Bangladesh observes

higher transmission than the northern part of the country. The model identified several dis-

tricts (mostly in the northern part of the country) with modelled transmission but without any

reported cases.

Dengue transmission fluctuated over the months with 92% of estimated annual cases occur-

ring in August and September. During this period, almost all the districts across the country

were estimated to have cases, although 94% of national total were in Dhaka. National
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surveillance data reported cases from less than half of the affected districts estimated by the

model (Fig 4).

Fig 5 shows the spatial variation in the percentage of estimated cases reported by month

(July-September). In general, districts with higher case numbers had a higher percentage of

estimated cases reported compared to the districts with fewer case numbers during the high

transmission months of August and September.

Discussion

We present the first model-based estimates of the monthly geographical distribution of dengue

cases in Bangladesh. In national surveillance data more than half the districts reported zero

cases but we believe disease occurred but was not reported. To address this zero-inflation, a

ZINB model was developed. The spatio-temporal full model identified that increasing mean

monthly temperature and decreasing DTR at lag two months were significantly associated with

high incidence of dengue. The inverse relationship between temperature and DTR in our study

corroborates previous observations [10,25]. Our analysis also suggested a positive association

between dengue and mean monthly rainfall at two months lag. Several studies reported that

increasing mean monthly temperature and rainfall significantly increase dengue risk at different

Table 1. Posterior mean and corresponding 95% highest posterior density (HPD) credible intervals (CrI) for parameters of the three zero-inflated negative bino-

mial models.

Parameters Temporal model,

Posterior mean (95% HPD CrI)

Spatio-temporal full model,

Posterior mean (95% HPD CrI)

Spatio-temporal model without fixed effect covariates,

Posterior mean (95% HPD CrI)

Temperature lagged 1 month -1.52 (-3.69, 0.60) 0.42 (-1.82, 2.65)

DTR lagged 1 month 1.01 (-1.18, 3.25) 2.08 (-0.28, 4.47)

(Temperature�DTR)

lagged 1 month

0.04 (-1.25, 1.34) -0.88 (-2.26, 0.50)

Rainfall lagged 1 month 0.03 (-1.05, 1.12) 0.24 (-0.85, 1.34)

Temperature lagged 2 months 6.79 (4.25, 9.47) 3.81 (1.63, 6.04)

DTR lagged 2 months 1.57 (-0.16, 3.32) -0.14 (-2.14, 1.84)

(Temperature�DTR)

lagged 2 months

-3.34 (-4.87, -1.86) -1.73 (-3.13, -0.36)

Rainfall lagged 2 months 1.17 (0.18, 2.17) 1.22 (0.19, 2.26)

Population density 0.68 (0.24, 1.18) 0.69 (0.38, 1.03)

Outbreak month

Yes 2.80 (0.95, 4.85) 3.20 (1.37, 5.17)

No Ref Ref

Border

Yes Ref Ref

No -1.86 (-3.03, -0.69) -1.22 (-2.20, -0.25)

Zero-inflation parameter 0.06

(0.05, 0.09)

0.08

(0.06, 0.10)

0.06

(0.04, 0.08)

Kappa 0.28

(0.20, 0.39)

0.31

(0.11, 0.80)

Tau 1.50

(1.03, 3.18)

12.19

(2.44, 272.06)

Moran’s Index: 0.12

(p-value<0.0001)

0.14

(p-value<0.0001)

DIC 1099.54 1079.44 1132.55

� interaction between two variables

https://doi.org/10.1371/journal.pntd.0006947.t001
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time lags [26–28], reflecting the delays in the impact of weather on mosquito populations and

subsequent changes in transmission patterns. Population density was found to be significantly

associated with dengue risk. High transmission of dengue in densely populated areas has been

reported in the literature [29,30]. Incidence was higher in districts bordering India or Myanmar,

perhaps due to cross-border migration from endemic countries to Bangladesh [31].

The model identified highest transmission during August and September (92% of estimated

annual cases). Transmission is spatially heterogeneous, with a higher number of cases esti-

mated in the south compared to the northern districts, and the highest in Dhaka. An earlier

study investigated space-time clusters of dengue transmission in Bangladesh from 2000 to

2009 and reported Dhaka as the most likely cluster throughout the study period, with a small

number of secondary clusters in the south of the country in 2000 [16]. June-November was

reported as the high transmission season when all the clusters were identified [16].

Our model also identified districts with transmission that went unreported; during the high

transmission month of August, cases were reported from less than 50% of the affected districts.

We estimated that the reporting percentage (the percentage of all cases reported to the surveil-

lance system) also varies by month. During the high transmission months, reporting is gener-

ally higher in districts with high compared to those with low transmission. However, towards

Fig 2. Posterior density plots of fixed effect parameters derived from the spatio-temporal full model. The figure was produced

using R-package INLA.

https://doi.org/10.1371/journal.pntd.0006947.g002
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the end of the high transmission season, proportion reported declined in majority of districts

presumably due to the lower case numbers.

A study measuring global burden of dengue estimated 4,097,833 symptomatic infections

(95% Bayesian credible interval: 2,952,879–5,608,456) in Bangladesh in 2010 [5] which differs

Fig 3. Spatial pattern in monthly aggregated dengue cases reported between 2000 and 2009 and average number of fitted

dengue cases, estimated by the spatio-temporal full model. Only 0.01% of cases were estimated outside the period June-

December and are not shown here. The figure was produced using ArcGIS 10.5.1 (ESRI, Redlands, California).

https://doi.org/10.1371/journal.pntd.0006947.g003
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considerably from our annual estimate presumably due to the differences in data and model-

ling strategy. A two-stage analytical approach was taken by Bhatt et al [5] where a boosted

regression tree approach was adopted to estimate the relationship between the probability of

occurrence of a dengue infection and the environmental conditions sampled at each study site.

Covariates included vegetation index, indicators of urbanisation and relative poverty, and an

urban accessibility metric in addition to temperature and precipitation [5]. Annual estimates

of infections were obtained from a hierarchical Bayesian model estimating the relationship

between longitudinal incidence data from 54 cohort studies and the previously generated

Fig 4. Paired bar chart to show the number of districts that reported dengue cases during 2000–2009 and the number of

districts with transmission estimated from the spatio-temporal full model. The numbers on top of the bars represent total

monthly number of cases reported and estimated by the model. The figure was produced using R-package ggplot2.

https://doi.org/10.1371/journal.pntd.0006947.g004
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probability of occurrence of dengue infection [5]. The estimated apparent dengue infections

referred to any infection encompassing any disruption to the daily routine of the infected indi-

vidual [5], whereas our estimates are calculated based on hospital admitted patients and there-

fore not representative of all symptomatic infections. Sparse data points and lack of cohort

Fig 5. Monthly spatial variation in the percentage of estimated total cases that were reported to the surveillance system,

calculated as (reported case numbers/mean estimate of total case numbers estimated by the model)�100. The figure was

produced using ArcGIS 10.5.1 (ESRI, Redlands, California).

https://doi.org/10.1371/journal.pntd.0006947.g005
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studies across a range of transmission intensities in the Indian subcontinent could be responsi-

ble for the large uncertainties associated with the Bhatt et al’s estimates in this region [5].

The strength of our model is the ability to generate estimates of dengue in areas with sus-

pected under-detection. Relatively low case numbers indicate the potential of active transmis-

sion of the disease in a district which is crucial in the absence of information regarding the

mosquito vector population. This is also indicative of increased transmission risk across the

neighbouring districts resulting from inter-district movements of viraemic individuals. The

assumption that transmission is governed by climatic suitability is reasonable, especially in the

absence of effective public health strategies including mosquito control program. Our model

was incapable of capturing the inter-annual variation in dengue and climate variables due to

the aggregation of monthly counts over the study period which was required to model the

monthly spread of dengue across the country.

In conclusion, our study provides model-based estimates of spatial variation in monthly

dengue cases across Bangladesh without compromising data for model fit. We believe that our

findings provide a valuable assessment of the national dengue situation accounting for under-

reporting. This study will contribute important information for prioritising and targeting den-

gue control and elimination interventions across Bangladesh.
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