101 research outputs found

    The DNA damage response is developmentally regulated in the African trypanosome

    Get PDF
    Genomes are affected by a wide range of damage, which has resulted in the evolution of a number of widely conserved DNA repair pathways. Most of these repair reactions have been described in the African trypanosome Trypanosoma brucei, which is a genetically tractable eukaryotic microbe and important human and animal parasite, but little work has considered how the DNA damage response operates throughout the T. brucei life cycle. Using quantitative PCR we have assessed damage induction and repair in both the nuclear and mitochondrial genomes of the parasite. We show differing kinetics of repair for three forms of DNA damage, and dramatic differences in repair between replicative life cycle forms found in the testse fly midgut and the mammal. We find that mammal-infective T. brucei cells repair oxidative and crosslink-induced DNA damage more efficiently than tsetse-infective cells and, moreover, very distinct patterns of induction and repair of DNA alkylating damage in the two life cycle forms. We also reveal robust repair of DNA lesions in the highly unusual T. brucei mitochondrial genome (the kinetoplast). By examining mutants we show that nuclear alkylation damage is repaired by the concerted action of two repair pathways, and that Rad51 acts in kinetoplast repair. Finally, we correlate repair with cell cycle arrest and cell growth, revealing that induced DNA damage has strikingly differing effects on the two life cycle stages, with distinct timing of alkylation-induced cell cycle arrest and higher levels of damage induced death in mammal-infective cells. Our data reveal that T. brucei regulates the DNA damage response during its life cycle, a capacity that may be shared by many microbial pathogens that exist in variant environments during growth and transmission

    DesequilĂ­brios genĂŽmicos na cardiopatia congĂȘnita sindrĂŽmica

    Get PDF
    To identify pathogenic genomic imbalances in patients presenting congenital heart disease (CHD) with extra cardiac anomalies and exclusion of 22q11.2 deletion syndrome (22q11.2 DS). Methods: 78 patients negative for the 22q11.2 deletion, previously screened by fluorescence in situ hybridization (FISH) and/or multiplex ligation probe amplification (MLPA) were tested by chromosomal microarray analysis (CMA). Results: Clinically significant copy number variations (CNVs ≄300. kb) were identified in 10% (8/78) of cases. In addition, potentially relevant CNVs were detected in two cases (993. kb duplication in 15q21.1 and 706. kb duplication in 2p22.3). Genes inside the CNV regions found in this study, such as IRX4, BMPR1A, SORBS2, ID2, ROCK2, E2F6, GATA4, SOX7, SEMAD6D, FBN1, and LTPB1 are known to participate in cardiac development and could be candidate genes for CHD. Conclusion: These data showed that patients presenting CHD with extra cardiac anomalies and exclusion of 22q11.2 DS should be investigated by CMA. The present study emphasizes the possible role of CNVs in CHD. © 2017 Sociedade Brasileira de Pediatria.To identify pathogenic genomic imbalances in patients presenting congenital heart disease (CHD) with extra cardiac anomalies and exclusion of 22q11.2 deletion syndrome (22q11.2 DS). Methods: 78 patients negative for the 22q11.2 deletion, previously screen935497507FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO2008/10596-0, 2008/50421-4, 2009/08756-1, 2011/23794-7149600/2010-0, 471422/2011-8; 471422/2011-8; 2011/23794-7Identificar desequilĂ­brios genĂŽmicos patogĂȘnicos em pacientes que apresentam cardiopatias congĂȘnitas (CC) e anomalias extracardĂ­acas e exclusĂŁo da sĂ­ndrome de deleção 22q11.2 (SD22q11.2). Foram avaliados por microarray cromossĂŽmico (CMA) 78 pacientes neg
    • 

    corecore