3 research outputs found

    DNAase I hypersensitive site 3 ' to the beta-globin gene cluster contains a TAA Insertion specific for beta(s)-Benin haplotype

    No full text
    Background and Objectives. Analysis of DNA polymorphic sites is a powerful tool for detection of gene flow in human evolutionary studies and to trace genetic background associated with abnormal genes. The beta-globin focus contains more than 20 single-base restriction fragment length polymorphism (RFLP) sites spanning over 80 kb on chromosome 11. Far downstream of the expressed genes, there is a hypersensitive site (HS). The function of the 3'-HS remains unknown. As an approach to the understanding of the 3'-HS region in sickle cell anemia we searched for sequence polymorphism in the AT-rich region, using a non-radioactive polymerase chain reaction (PCR)-single strand conformational polymorphism (SSCP) technique. Design and Methods. A 460 bp fragment located at the 3' of the beta globin gene was amplified from patients (with sickle cell anemia and HbSC disease), and from AS individuals. Standard RFLP-haplotyping was performed and compared with the PCR-SSCP screening strategy. Results. Two distinct band patterns were revealed by SSCP testing, each one in strict linkage disequilibrium with either Benin or Bantu haplotypes. Direct sequencing of the amplified segment revealed a TAA insertion in the AT-rich region, in all 121 beta(s) Benin chromosomes tested, but not in other beta(s) haplotypes from the total of 380 beta(s) chromosomes typed. Interpretation and Conclusions. SSCP analysis could easily distinguish sequence variations in the XAT-rich region of the beta-globin cluster, and a TAA insertion in this region seems to be specific for the Benin-beta(s) chromosome. (C) 2002, Ferrata Storti Foundation.87324624

    Rivaroxaban with or without aspirin in stable cardiovascular disease

    No full text
    BACKGROUND: We evaluated whether rivaroxaban alone or in combination with aspirin would be more effective than aspirin alone for secondary cardiovascular prevention. METHODS: In this double-blind trial, we randomly assigned 27,395 participants with stable atherosclerotic vascular disease to receive rivaroxaban (2.5 mg twice daily) plus aspirin (100 mg once daily), rivaroxaban (5 mg twice daily), or aspirin (100 mg once daily). The primary outcome was a composite of cardiovascular death, stroke, or myocardial infarction. The study was stopped for superiority of the rivaroxaban-plus-aspirin group after a mean follow-up of 23 months. RESULTS: The primary outcome occurred in fewer patients in the rivaroxaban-plus-aspirin group than in the aspirin-alone group (379 patients [4.1%] vs. 496 patients [5.4%]; hazard ratio, 0.76; 95% confidence interval [CI], 0.66 to 0.86; P<0.001; z=−4.126), but major bleeding events occurred in more patients in the rivaroxaban-plus-aspirin group (288 patients [3.1%] vs. 170 patients [1.9%]; hazard ratio, 1.70; 95% CI, 1.40 to 2.05; P<0.001). There was no significant difference in intracranial or fatal bleeding between these two groups. There were 313 deaths (3.4%) in the rivaroxaban-plus-aspirin group as compared with 378 (4.1%) in the aspirin-alone group (hazard ratio, 0.82; 95% CI, 0.71 to 0.96; P=0.01; threshold P value for significance, 0.0025). The primary outcome did not occur in significantly fewer patients in the rivaroxaban-alone group than in the aspirin-alone group, but major bleeding events occurred in more patients in the rivaroxaban-alone group. CONCLUSIONS: Among patients with stable atherosclerotic vascular disease, those assigned to rivaroxaban (2.5 mg twice daily) plus aspirin had better cardiovascular outcomes and more major bleeding events than those assigned to aspirin alone. Rivaroxaban (5 mg twice daily) alone did not result in better cardiovascular outcomes than aspirin alone and resulted in more major bleeding events
    corecore